ETR0313_004

Negative Voltage Regulators

■GENERAL DESCRIPTION

The XC62K series are highly precise, low power consumption, negative voltage regulators, manufactured using CMOS and laser trimming technologies. The series achieves high output currents with small input-output voltage differentials, and consists of a high precision voltage reference, an error correction circuit, and an output driver with current limitation. SOT-23 (150mW), SOT-89 (500mW), USP-6B (100mW) and TO-92 (300mW) packages are available.

■APPLICATIONS

- Battery powered equipment
- Portable & cellular phones
- Various portable equipment
- Power supply for GaAs applications

■FEATURES

Dropout Voltage : 0.12V@50mA (Vout=-5.0V)

: 0.38V@100mA

Maximum Output Current : 100mA (within MAX. power

dissipation, Vout= -5.0V)

Output Voltage Range : -2.1V ~ -6.0V (0.1V increments)

-5.0, -4.0, -3.0V, -2.5V standard (All other voltages are semi-custom)

Highly Accurate : Setting output voltage ±2%

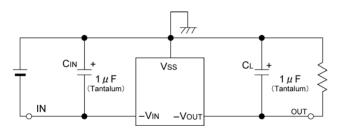
(±1% for semi-custom products)

Low Power Consumption : $3.0 \mu A @ VOUT = -5.0 V (TYP.)$

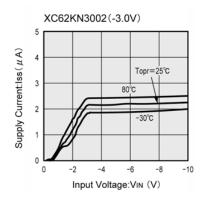
Output Voltage Temperature Characteristics

: ±100ppm/°C (TYP.)

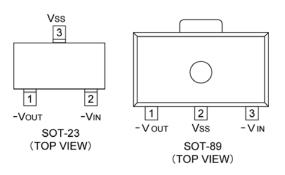
Line Regulation : 0.1%/V (TYP.)
CMOS Low Power Consumption

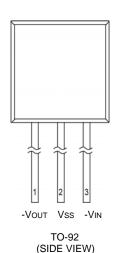

D--1----

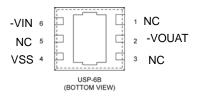
Packages : SOT-23


SOT-89 TO-92 USP-6B

Environmentally Friendly: EU RoHS Compliant, Pb Free


■TYPICAL APPLICATION CIRCUIT




■ TYPICAL PERFORMANCE CHARACTERISTICS

■PIN CONFIGURATION

*The dissipation pad for the USP-6B package should be solder-plated in recommended mount pattern and metal masking so as to enhance mounting strength and heat release.

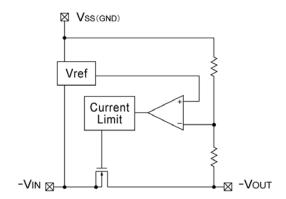
If the pad needs to be connected to other pins, it should be connected to the VSS pin.

■ PIN ASSIGNMENT

	PIN NUMBER		PIN NAME	FUNCTION
SOT-23	SOT-89/TO-92	USP-6B	FIN NAME	FUNCTION
2	3	6	-VIN	Power Supply Input
3	2	4	Vss	Ground
1	1	2	-Vout	Output
-	-	1.3.5	NC	No Connection

■PRODUCT CLASSIFICATION

Ordering Information


XC62K(1)2(3)4(5)6(7)-(8)(*1)

MARK	DESCRIPTION	SYMBOL	DESCRIPTION
1	Polarity of Output Voltage	N	Negative
23	Output Voltage	21 ~ 60	e.g. Vout – 2.1V \rightarrow ②=2, ③=1 Vout – 6.0V \rightarrow ②=6, ③=0
4	Temperature Characteristics	0	<u>+</u> 100ppm (TYP.)
(5)	Output Voltage Accuracy	1	± 1% (Semi-custom)
9	Output Voltage Accuracy	2	<u>+</u> 2%
	Packages Taping Type ^(*2)	MR	SOT-23
		MR-G	SOT-23
		PR	SOT-89
		PR-G	SOT-89
67-8		TH	TO-92:Paper type
00/-0		TH-G	TO-92:Paper type
		ТВ	TO-92:Bag type
		TB-G	TO-92:Bag type
		DR	USP-6B
		DR-G	USP-6B

^(*1) The "-G" suffix indicates that the products are Halogen and Antimony free as well as being fully RoHS compliant.

^(*2) The device orientation is fixed in its embossed tape pocket. For reverse orientation, please contact your local Torex sales office or representative. (Standard orientation: ⑥R-⑧, Reverse orientation: ⑥L-⑧)

■BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

Ta=25°C

				1a-23 C
PARAMETER	PARAMETER		RATINGS	UNITS
Input Voltage	Input Voltage		-12.0	V
Output Currer	nt	lout	200	mA
Output Voltag	Output Voltage		-VDD-0.3~VIN+0.3	V
	SOT-23	 	150	
Power Dissipation	SOT-89		500	mW
1 Ower Dissipation	TO-92		300] """
	USP-6B		100	
Operating Temperature Range		Topr	-40 ~ +85	°C
Storage Temperature	Storage Temperature Range		-40 ~ +125	°C

Note: Please ensure that IOUT is less than Pd/(VOUT-VIN).

■ELECTRICAL CHARACTERISTICS

XC62KN5002 VOUT(T)=-5.0VTa=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*2)	VOUT(E)	Iout=20mA Vin=-6.0V	x 0.98 -4.90	VOUT(T) -5.00	x 1.02 -5.10	V	2
Maximum Output Current	IOUT max	VIN=-6.0V, VOUT(E)≧-4.5V	100	-	-	mA	4
Load Regulation	ΔVουτ	VIN=6.0V 1mA≦Iouт≦50mA	-	40	80	mV	4
Dropout Voltage (*3)	Vdif	IOUT=50mA	-	120	300	mV	3
Dropout voltage (3)	vuii	Iout=100mA	- 380		600	IIIV	3
Supply Current	Iss	VIN=-6.0V	1	3.0	7.0	μΑ	1
Line Regulation	∆Vout ∆Vin • Vout	IOUT=20mA -6.0V≦VIN≦-10.0V	-	0.1	0.3	%V	3
Input Voltage	Vin	-	-	-	-10.0	V	-
Output Voltage Temperature Characteristics	∆Vout ∆Vin • Vout	IOUT=20mA -30°C≦Topr≦80°C	-	±100	-	ppm/	-

XC62KN4002	VOUT(T)=-4.0V	Ta=25°C
------------	---------------	---------

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*2)	Vout(e)	IOUT=20mA	x 0.98	Vout(t)	x 1.02	V	2
Output Voltage (2)	VOOT(E)	VIN=-5.0V -3.92		-4.00	-4.08	V	
Maximum Output Current	IOUT max	VIN=-5.0V, VOUT(E) ≥-3.6V	80	-	-	mA	4
Load Regulation	ΔVουτ	VIN=-5.0V		40	80	mV	4
Load Regulation	Z V001	1mA≦lo∪T≦45mA	-	40	80		
Dropout Voltage (*3)	Vdif	IOUT=45mA	-	120	300	mV	3
Diopout voltage (3)	Vuli	IOUT=90mA	-	380	600	111 V	3
Supply Current	Iss	VIN=-5.0V	-	3.0	6.5	μΑ	1
Line Regulation	ΔVουτ	Iout=20mA		0.1	0.3	%V	3
Line Regulation	△VIN • VOUT	-5.0V≦VIN≦-10.0V	-	- 0.1		76 V	3
Input Voltage	Vin	-	-	-	-10.0	V	-
Output Voltage Temperature Characteristics	∆Vout ∆Vin • Vout	louт=20mA -30°C≦Topr≦80°C	-	±100	-	ppm/ °C	-

^{*1:} Vouτ(T)=Specified output voltage
*2: Vouτ(E)=Effective output voltage (i.e. the output voltage when "Vouτ(T) -1.0V" is provided at the Vin pin while maintaining a certain lout

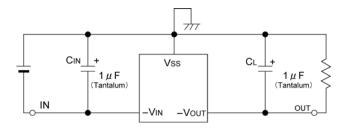
^{*3:} Vdif = {Vin1 - Vout1}

^{*4:} VouT1 =A voltage equal to 98% of the output voltage whenever an amply stabilized louT {VouT(T) -1.0V} is input.

^{*5:} VIN1=The input voltage when a voltage equal to 98% of Vout(E) appears. (Input voltage is gradually decreased.)

^{*6:} IOUTMAX=Please ensure that output current is within the values given for power dissipation.

■ ELECTRICAL CHARACTERISTICS (Continued)

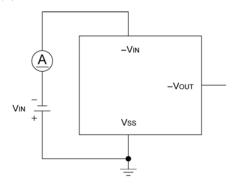

VOUT(T)=-3.0VXC62KN3002 Ta=25°C

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNITS	CIRCUIT
Output Voltage (*2)	VOUT(E)	IOUT=20mA VIN=-4.0V	x 0.98 -2.94	VOUT(T) -3.00	x 1.02 -3.06	V	2
MAX. Output Current	IOUT max	VIN=-4.0V, VOUT(E)≧-2.7V	60	-	-	mA	4
Load Regulation	ΔVουτ	VIN=-4.0V 1mA≦Iouт≦40mA	-	40	80	mV	4
Dropout Voltage	Vdif	IOUT=40mA	-	120	300	mV	3
Dropout voltage	vuii	IOUT=80mA	-	380	600	1117	3
Supply Current	Supply Current Iss		-	2.5	6.0	μΑ	1
Line Regulation	ΔVουτ ΔVιΝ • Vουτ	IOUT=20mA -4.0V≦VIN≦-10.0V	-	0.1	0.3	%V	3
Input Voltage	Vin	-	-	-	-10.0	V	-
Output Voltage Temperature Characteristics		Iоuт=20mA -30°C≦Topr≦80°C	-	±100	-	ppm/ °C	-

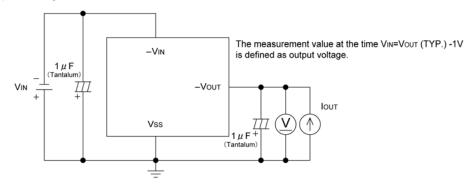
NOTE:

- *1: Vout(T)=Specified output voltage
- *2: Voυτ(E)=Effective output voltage (i.e. the output voltage when "Voυτ(T) -1.0V" is provided at the VIN pin while maintaining a certain lout value).
- *3: Vdif = {VIN1 VOUT1}
- *4: Vouτ1 =A voltage equal to 98% of the output voltage whenever an amply stabilized louτ {Vouτ(T) -1.0V} is input. *5: VIN1=The input voltage when a voltage equal to 98% of Vouτ(E) appears. (Input voltage is gradually decreased.)
- *6: IOUTMAX=Please ensure that output current is within the values given for power dissipation.

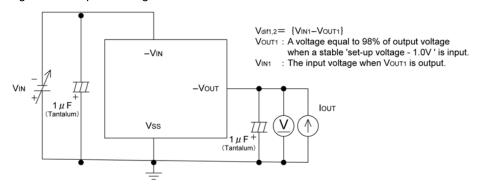
■TYPICAL APPLICATION CIRCUIT

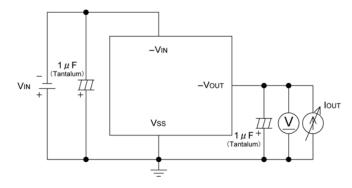


■NOTES ON USE

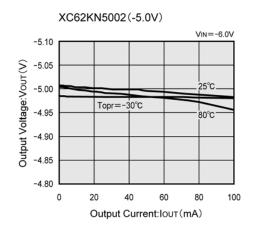

Please ensure that values for input capacitance, CIN and out capacitance, CL, are more than 1 μ F (Tantalum).

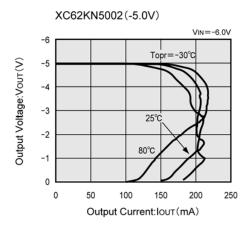
TEST CIRCUITS

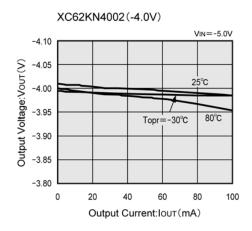

Circuit 1. Supply Current

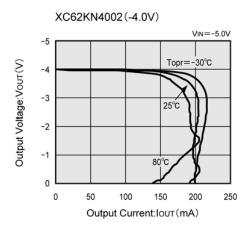

Circuit 2. Output Voltage

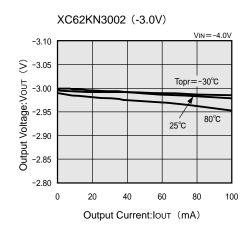
Circuit 3. Line Regulation Dropout Voltage

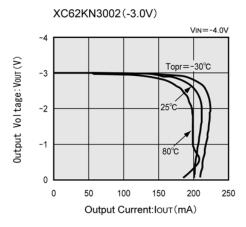


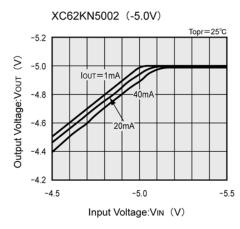

Circuit 4. Load Regulation, Maximum Output Current

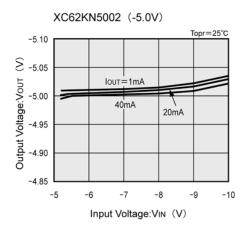


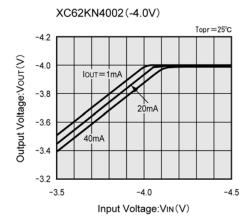

■TYPICAL PERFORMANCE CHARACTERISTICS

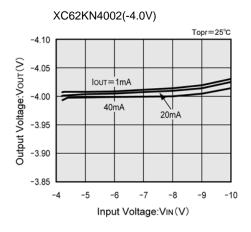

(1) Output Voltage vs. Output Current



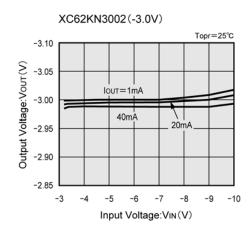


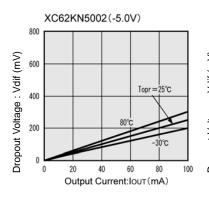


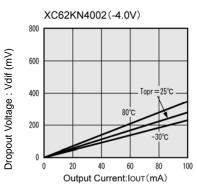


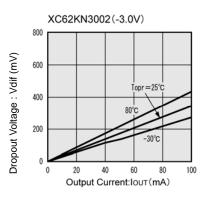


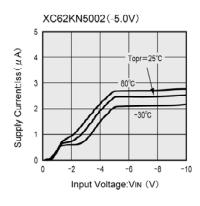
(2) Output Voltage vs. Input Voltage

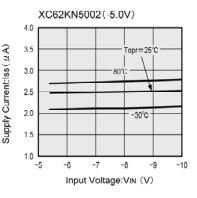


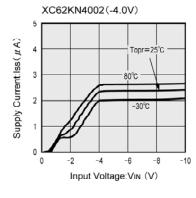


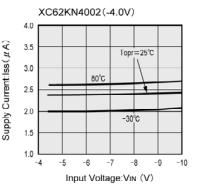


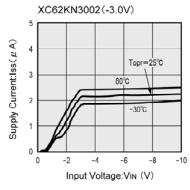


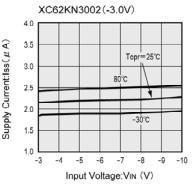

(3) Dropout Voltage vs. Output Current

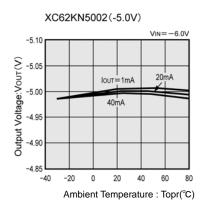


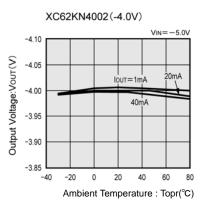


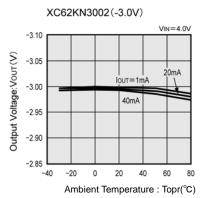


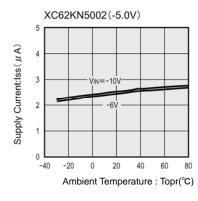

(4) Supply Current vs. Input Voltage

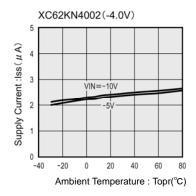


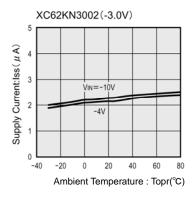


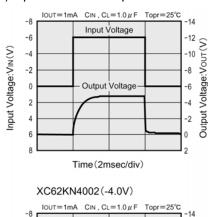


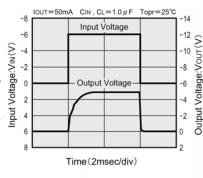


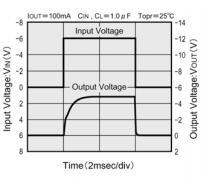

(5) Output Voltage vs. Ambient Temperature

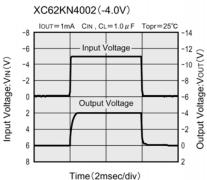


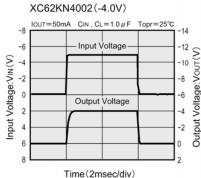


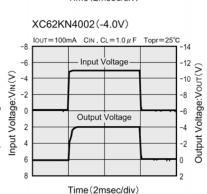

(6) Supply Current vs. Ambient Temperature

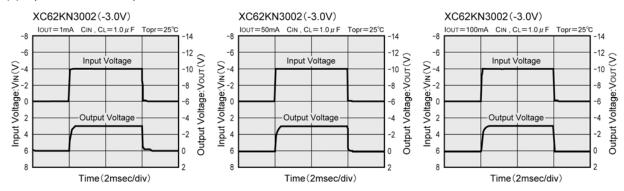


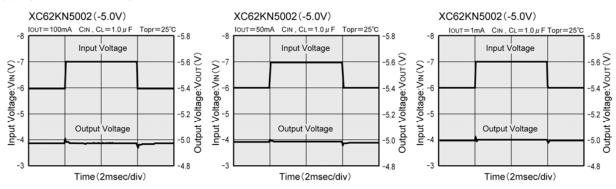


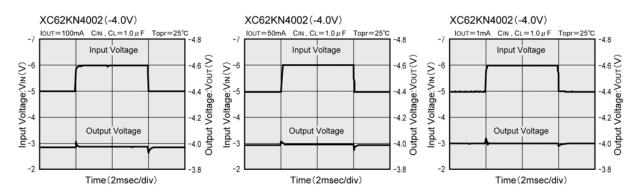


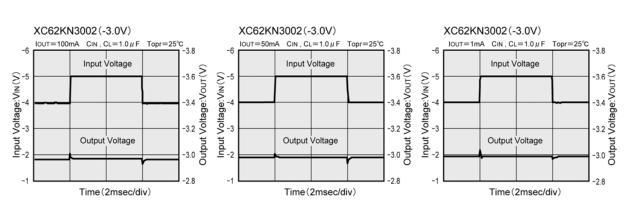

(7) Input Transient Response 1

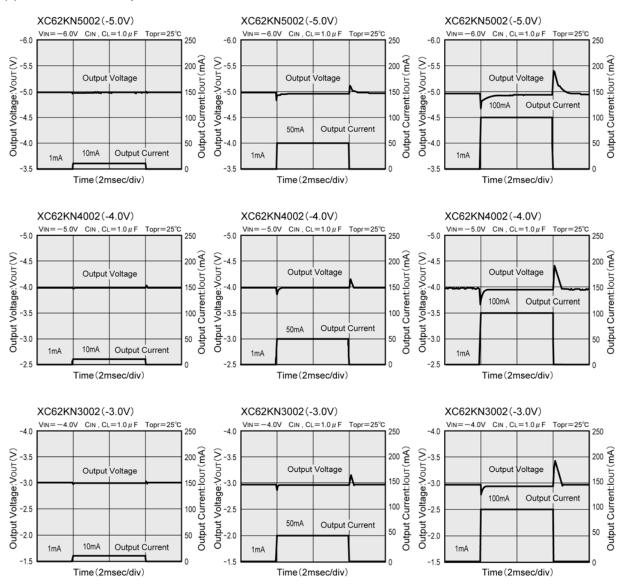


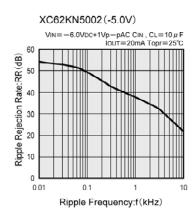


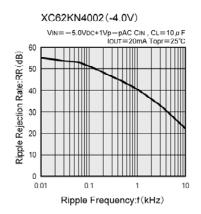


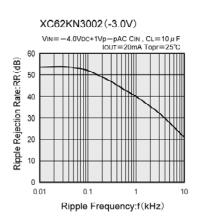


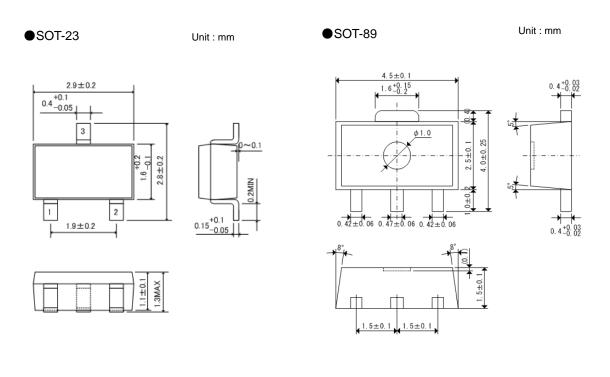

(7) Input Transient Response 1

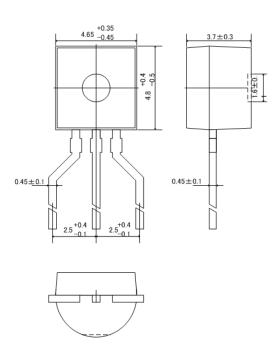

(8) Input Transient Response 2



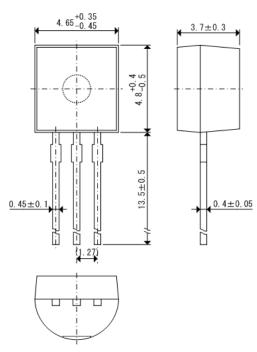



(9) Load Transient Response


(10) Ripple Rejection Rate

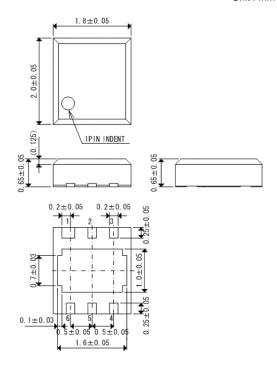


■PACKAGING INFORMATION

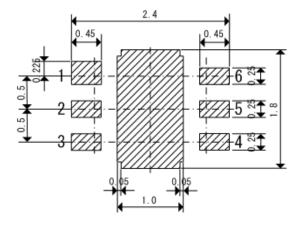


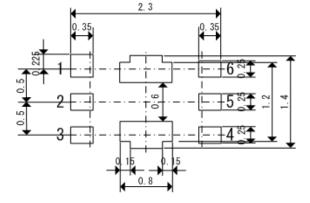
●TO-92 Unit : mm

Paper type

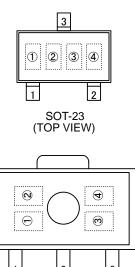

Bag

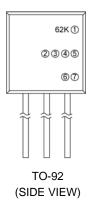
■ PACKAGING INFORMATION (Continued)


●USP-6B


Unit: mm

●USP-6B Reference Pattern Layout


●USP-6B Reference Metal Mask Design


■ MARKING RULE

●SOT-23, SOT-89

SOT-89 (TOP VIEW)

●TO-92

1 represents integral number of output voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
2	2.X	5	5.X
3	3.X	6	6.X
4	4.X		

2 represents decimal number of output voltage

MARK	VOLTAGE (V)	MARK	VOLTAGE (V)
А	x.0	F	x.5
В	x.1	Н	x.6
С	x.2	K	х7
D	x.3	L	x.8
Е	x.4	M	x.9

3 represents polarity of output voltage

MARK	POLARITY
5	Negative

④ represents production lot number 0 to 9, A to Z repeated, reverse character 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

① represents polarity of output voltage

MARK	OUTPUT CONFIGURATION
N	(Negative)

23 represents output voltage (ex.)

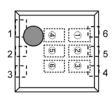
MA	RK	VOLTACE (V)
2	3	VOLTAGE (V)
3	3	3.3
5	0	5.0

4 represents temperature characteristics

0 1		
MARK	TEMPERATURE	
MARK	CHARACTERISTICS	
0	<u>+</u> 100 ppm (TYP.)	

5 represents output voltage accuracy

MARK	OUTPUT VOLTAGE ACCURACY
1	Within <u>+</u> 1% (semi-custom)
2	Within <u>+</u> 2%


6 represents least significant digit of production year (ex.)

MARK	PRODUCTION YEAR
3	2003
4	2004

represents production lot numberto 9, A to Z repeated (G, I, J, O, Q, W excluded)

■ MARKING RULE (Continued)

●USP-6B

USP-6B (TOP VIEW)

${\textcircled{\scriptsize 1}}$ represents production series

MARK	PRODUCT SERIES
К	XC62KNxx0xDx

2 represents polarity of output voltage

MARK	POLARITY	PRODUCT SERIES
N	-(Negative)	XC62KNxx0xDx

34 represents output voltage (ex.)

MA	\RK	VOLTAGE (V)	PRODUCT SERIES
3	4	VOLIAGE (V)	PRODUCT SERIES
3	3	3.3	XC62KN330xDx
5	0	5.0	XC62KN500xDx

5 represents temperature characteristics

MARK	TEMPERATURE CHARACTERISTICS	PRODUCT SERIES
0	<u>+</u> 100 ppm (TYP.)	XC62KNxx0xDx

⑥ represents production lot number 0 to 9, A to Z repeated (G, I, J, O, Q, W excluded)

Note: No character inversion used.

- The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this datasheet is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this datasheet.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this datasheet.
- 4. The products in this datasheet are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.

 (e.g. Atomic energy: perspace: transport: combustion and associated safety.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this datasheet within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this datasheet may be copied or reproduced without the prior permission of TOREX SEMICONDUCTOR LTD.

TOREX SEMICONDUCTOR LTD.