Quad high side smart power solid state relay Datasheet -production data #### **Features** | Туре | V _{demag} ⁽¹⁾ | R _{DSon} ⁽¹⁾ | I _{out} ⁽¹⁾ | v _{cc} | |-------------|-----------------------------------|----------------------------------|---------------------------------|-----------------| | VNI4140K-32 | V _{CC} -41 V | $0.08~\Omega$ | 1 A | 41 V | - Per channel - Output current: 1 A per channel - Shorted load protections - Junction overtemperature protection - Case overtemperature protection for thermal independence of the channels - Thermal case shutdown restart not simultaneous for the various channels - Protection against loss of ground - Current limitation - Undervoltage shutdown - Open drain diagnostic outputs - 3.3 V CMOS/TTL compatible inputs - Fast demagnetization of inductive loads - Conforms to IEC 61131-2 - ESD according to IEC 61000-4-2 up to +/-25 KV #### **Description** The VNI4140K-32 is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four independent resistive, capacitive or inductive loads with one side connected to ground. Active current limitation avoids the system power supply dropping in the case of shorted load. Built-in thermal shutdown protects the chip from overtemperature and shortcircuit. In overload condition, the channel turns OFF and back ON automatically so as to maintain junction temperature between T_{TSD} and T_{R} . If this condition causes case temperature to reach T_{CSD}, the overloaded channel is turned OFF and restarts only when case temperature has decreased down to T_{CR} . In the case of more than one channel in overload, re-start of the overloaded channels is not simultaneous, in order to avoid high peak current from the supply. Nonoverloaded channels continue to operate normally. The open drain diagnostic outputs indicate overtemperature conditions. Figure 1. Block diagram March 2012 Doc ID022576 Rev 3 1/26 This is information on a product in full production. Contents VNI4140K-32 ## **Contents** | 1 | Pin connection | |----|---| | 2 | Maximum ratings | | 3 | Recommended | | 4 | Electrical characteristics6 | | 5 | Truth table10 | | 6 | Thermal management | | 7 | Switching waveforms12 | | 8 | Pin functions13 | | 9 | Package and PCB thermal data 15 9.1 VNI4140K-32 thermal data 15 | | 10 | Reverse polarity protection17 | | 11 | Package mechanical data | | 12 | Ordering information | | 13 | Revision history 25 | 577 VNI4140K-32 Pin connection ### 1 Pin connection Figure 2. Pin connection (top view) Table 1. Pin description | Pin | Name | Description | |-----|-------|--| | Tab | TAB | Exposed tab internally connected to Vcc | | 1 | Vcc | Supply voltage | | 2 | IN1 | Channel 1 input 3.3 V CMOS/TTL compatible | | 3 | STAT1 | Channel 1 status in open drain configuration | | 4 | IN2 | Channel 2 input 3.3 V CMOS/TTL compatible | | 5 | STA2 | Channel 2 status in open drain configuration | | 6 | GND | Device ground connection | | 7 | STAT3 | Channel 3 status in open drain configuration | | 8 | IN3 | Channel 3 input 3.3 V CMOS/TTL compatible | | 9 | STAT4 | Channel 4 status in open drain configuration | | 10 | IN4 | Channel 4 input 3.3 V CMOS/TTL compatible | | 11 | NC | | | 12 | NC | | | 13 | OUT4 | Channel 4 power stage output, internally protected | | 14 | OUT4 | Channel 4 power stage output, internally protected | | 15 | OUT4 | Channel 4 power stage output, internally protected | | 16 | OUT3 | Channel 3 power stage output, internally protected | | 17 | OUT3 | Channel 3 power stage output, internally protected | Pin connection VNI4140K-32 Table 1. Pin description (continued) | Pin | Name | Description | |-----|------|--| | 18 | OUT3 | Channel 3 power stage output, internally protected | | 19 | OUT2 | Channel 2 power stage output, internally protected | | 20 | OUT2 | Channel 2 power stage output, internally protected | | 21 | OUT2 | Channel 2 power stage output, internally protected | | 22 | OUT1 | Channel 1 power stage output, internally protected | | 23 | OUT1 | Channel 1 power stage output, internally protected | | 24 | OUT1 | Channel 1 power stage output, internally protected | VNI4140K-32 Maximum ratings ## 2 Maximum ratings Table 2. Absolute maximum rating | Symbol | Parameter | Value | Unit | |-------------------|--|--------------------|------| | V _{CC} | Power supply voltage | 41 | V | | -V _{CC} | Reverse supply voltage | -0.3 | V | | I _{GND} | DC ground reverse current | -250 | mA | | I _{OUT} | Output current (continuos) | Internally limited | Α | | I _R | Reverse output current (per channel) | -5 | Α | | I _{IN} | Input current (per channel) | ± 10 | mA | | V _{IN} | Input voltage | +V _{CC} | ٧ | | V _{STAT} | Status pin voltage | +V _{CC} | ٧ | | I _{STAT} | Status pin current | ± 10 | mA | | V _{ESD} | Electrostatic discharge (R = 1.5 kΩ; C = 100 pF) | 2000 | V | | E _{AS} | Single pulse avalanche energy per channel not simultaneous | 300 | mJ | | P _{TOT} | Power dissipation at T _c = 25 °C | Internally limited | W | | TJ | Junction operating temperature | Internally limited | °C | | T _{STG} | Storage temperature | -55 to 150 | °C | #### 2.1 Thermal data Table 3. Thermal data | Symbol | Parameter Parameter | | Value | Unit | |---------------------|--------------------------------------|------|---------------|------| | R _{th(JC)} | Thermal resistance junction-case (1) | Max. | 2 | °C/W | | R _{th(JA)} | Thermal resistance junction-ambient | Max. | see Figure 11 | °C/W | ^{1.} Per channel. ### 3 Recommended Table 4. Input switching limits | Symbol | Parameter | Value | Unit | |----------------------|-----------------------------------|-------|------| | f _{Vin MAX} | Maximum input switching frequency | 10 | kHz | Electrical characteristics VNI4140K-32 ### 4 Electrical characteristics 10.5 V < V_{CC} < 36 V; -40 °C < T_J < 125 °C; unless otherwise specified. Table 5. Power section | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-----------------------|--|---|------|------------|----------------|-------------------| | Vcc | Supply voltage | | 10.5 | | 36 | V | | R _{DS(ON)} | ON state resistance | I_{OUT} = 0.7 A at T_J = 25 °C I_{OUT} = 0.7 A | | | 0.080
0.140 | Ω Ω | | V _{clamp} | | I _s = 20 mA | 41 | 45 | 52 | V | | I _S | Supply current | All channels in OFF state,
ON state with V _{IN} = 5 V | | 250
2.4 | 4 | μA
mA | | V _{OUT(OFF)} | OFF state output voltage | V _{IN} = 0 V and I _{OUT} = 0 A | | | 1 | V | | I _{OUT(OFF)} | OFF state output current | V _{IN} = V _{OUT} = 0 V | 0 | | 5 | μА | | I _{LGND} | Output current in ground disconnection | $V_{cc} = V_{IN} = GND = 24 V;$
$T_J = 125 °C$ | | | 500 | μА | | F _{CP} | Charge pump frequency | Channel in ON state (1) | | 1450 | | kHz | ^{1.} To cover EN55022 class A and class B normative. V_{CC} = 24 V; -25 °C < T_J < 125 °C, R_L = 48 Ω input rise time < 0.1 $\mu s)$ Table 6. Switching | Symbol | Parameter | Test condition | Min. | Тур. | Max. | Unit | |-----------------------|------------------------|----------------|------|------|------|------| | t _{d(ON)} | Turn ON delay | | | 6 | | μS | | t _r | Rise time | | | 5 | | μS | | t _{d(OFF)} | Turn OFF | | | 12 | | μS | | t _f | Fall time | | | 5 | | μS | | dV/dt _(ON) | Turn ON voltage slope | | | 4 | | V/µS | | dV/dt(off) | Turn OFF voltage slope | | | 4 | | V/µS | Figure 3. Switching parameter conventions **577** Electrical characteristics VNI4140K-32 Table 7. Logical input | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|--------------------------|------------------------|------|------|------|------| | V _{IL} | Input low level voltage | | | | 0.8 | V | | V _{IH} | Input high level voltage | | 2.20 | | | V | | V _{I(HYST)} | Input hysteresis voltage | | | 0.15 | | V | | | Input ourrent | V _{IN} = 15 V | | | 10 | | | IIN | Input current | V _{IN} = 36 V | | | 210 | μΑ | Table 8. Protection and diagnostic | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---------------------|-------------------------------|--|-------------------------|-------------------------|-------------------------|------| | V _{STAT} | Status voltage output low | I _{STAT} = 1.6 mA | | | 0.6 | V | | V _{USD} | Undervoltage protection | | 7 | | 10.5 | V | | V _{USDHYS} | Undervoltage hysteresis | | 0.4 | 0.5 | | V | | I _{LIM} | DC short-circuit current | $V_{CC} = 24 \text{ V}; R_{LOAD} < 10 \text{ m}\Omega$ | 1.01 | | 2.6 | Α | | I _{PEAK} | Maximum DC output current | Dynamic load | | 1.6 | | Α | | I _{LSTAT} | Status leakage current | V _{CC} = V _{STAT} = 36 V | | 30 | | μΑ | | T _{TSD} | Junction shutdown temperature | | 150 | 170 | 190 | °C | | T _R | Junction reset temperature | | 135 | | | ů | | T _{HIST} | Junction thermal hysteresis | | 7 | 15 | | °C | | T _{CSD} | Case shutdown temperature | | 125 | 130 | 135 | °C | | T _{CR} | Case reset temperature | | 110 | | | °C | | T _{CHYST} | Case thermal hysteresis | | 7 | 15 | | °C | | V _{demag} | Output voltage at turn-OFF | I _{OUT} = 0.5 A; L _{LOAD} >= 1 mH | V _{CC} -
41 | V _{CC} -
45 | V _{CC} -
52 | V | Figure 4. Current and voltage conventions **577** Truth table VNI4140K-32 ### 5 Truth table Table 9. Truth table | Conditions | INPUTn | OUTPUTn | STATUSn | |---|--------|---------|---------| | Normal operation | L | L | H | | | H | H | H | | Overtemperature | L | L | H | | | H | L | L | | Undervoltage | L | L | X | | | H | L | X | | Shorted load (Current limitation before thermal shutdown) | L | L | H | | | H | X | H | ### 6 Thermal management The power dissipation in the IC is the main factor that sets the safe operating condition of the device in the application. Therefore, it must be very carefully considered. Furthermore, the available space on the PCB should be chosen considering the power dissipation. Heatsinking can be achieved using copper on the PCB with proper area and thickness. Two different protections have been implemented to guarantee safety of the device if it overheats due to an overloaded condition or high environment temperature. The following flowchart explains in detail this protection functionality. Figure 5. Thermal behavior 577 Doc ID022576 Rev 3 11/26 Switching waveforms VNI4140K-32 ## 7 Switching waveforms VNI4140K-32 Pin functions ## 8 Pin functions Figure 7. Input circuit Figure 8. Status circuit Pin functions VNI4140K-32 Freq_CP 2000 1800 1400 1000 1000 1000 1000 1000 150 2000 1emperature("C) Figure 9. Charge pump switching frequency (typical) vs. temperature ### 9 Package and PCB thermal data #### 9.1 VNI4140K-32 thermal data Figure 10. VNI4140K-32 PCB Note: Layout condition of R_{th} and Z_{th} measurements (PCB: Double layer, Thermal Vias, FR4 area = 77 mm x 86 mm, PCB thickness=1.6 mm, Cu thickness = 70 mm (front and back side), Copper areas: from minimum pad layout to 8 cm²). Figure 11. R_{thJA} vs. PCB copper area in open box free air condition (one channel ON) Figure 12. VNI4140K-32 thermal impedance junction ambient single pulse (one channel ON) ### 10 Reverse polarity protection This schematic can be used with any type of load. The following is an indication on how to dimension the R_{GND} resistor. $$R_{GND} = (-V_{CC}) / (-I_{GND})$$ where $-I_{\mbox{\footnotesize GND}}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in R_{GND} (when V_{CC} < 0: during reverse polarity situations) is: $$PD = (-V_{CC})^2 / R_{GND}$$ Note: In normal conditions (no reverse polarity) due to the diode there is a voltage drop between GND of the device and GND of the system. Figure 13. Reverse polarity protection ### 11 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at:www.st.com. ECOPACK is an ST trademark. Table 10. PowerSSO-24 mechanical data | Symbol | mm | | | |--------|-------|------|-------| | | Min. | Тур. | Max. | | А | 2.15 | | 2.47 | | A2 | 2.15 | | 2.40 | | a1 | 0 | | 0.075 | | b | 0.33 | | 0.51 | | С | 0.23 | | 0.32 | | D | 10.10 | | 10.50 | | Е | 7.4 | | 7.6 | | е | | 0.8 | | | e3 | | 8.8 | | | G | | | 0.1 | | G1 | | | 0.06 | | Н | 10.1 | | 10.5 | | h | | | 0.4 | | L | 0.55 | | 0.85 | | N | | | 10deg | | Х | 4.1 | | 4.7 | | Y | 6.5 | | 7.1 | Figure 14. PowerSSO-24 package dimensions **577** Doc ID022576 Rev 3 19/26 Figure 15. PowerSSO-24 tube shipment (no suffix) Table 11. PowerSSO-24 tube shipment | Base Q.ty | 49 | |---------------------|------| | Bulk Q.ty | 1225 | | Tube length (± 0.5) | 532 | | Α | 3.5 | | В | 13.8 | | C (± 0.1) | 0.6 | Note: All dimensions are in mm. Figure 16. PowerSSO-24 reel shipment (suffix "TR") Table 12. PowerSSO-24 reel dimensions | Base Q.ty | 1000 | |-----------|------| | Bulk Q.ty | 1000 | | A (max.) | 330 | | B (min.) | 1.5 | | C (± 0.2) | 13 | | F | 20.2 | | G (2 ± 0) | 24.4 | | N (min.) | 100 | | T (max.) | 30.4 | Figure 17. PowerSSO-24 tape dimensions Table 13. PowerSSO-24 tape dimensions | Tape width | W | 24 | |-------------------|------------|------| | Tape Hole Spacing | P0 (± 0.1) | 4 | | Component Spacing | Р | 12 | | Hole Diameter | D (± 0.05) | 1.55 | | Hole Diameter | D1 (min) | 1.5 | | Hole Position | F (± 0.1) | 11.5 | | Compartment Depth | K (max) | 2.85 | | Hole Spacing | P1 (± 0.1) | 2 | Note: According to the electronic industries association (EIA) standard 481 rev. A, Feb 1986. Figure 18. VNI4140K-32 suggested footprint Note: STMicroelectronics is not responsible for any PCB related issues. The footprint shown in the above figure is a suggestion which might not be in line to the customer PCB supplier design rules. All dimensions are in mm. Ordering information VNI4140K-32 # 12 Ordering information Table 14. Ordering information | Order codes | Package | Packaging | |---------------|---------------------------|-----------| | VNI4140K-32 | PowerSSO-24 | Tube | | VNI4140KTR-32 | PowerSSO-24 Tape and reel | | VNI4140K-32 Revision history # 13 Revision history Table 15. Document revision history | Date | Revision | Changes | |-------------|----------|--| | 12-Dec-2011 | 1 | Initial release. | | 06-Feb-2012 | 2 | Updated I _{lim} minimum value in <i>Table 8: Protection and diagnostic.</i> Inserted new feature: ESD according to IEC 61000-4-2 up to +/-25 KV, in cover page. | | 07-Mar-2012 | 3 | Suggested footprint inserted. In <i>Table 5.</i> parameter I _{LGND} has been added. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com