Quad high-side smart power solid-state relay Datasheet -production data #### **Features** | Туре | V _{demag} ⁽¹⁾ | R _{DS(on)} ⁽¹⁾ | I _{out} ⁽¹⁾ | v _{cc} | |----------|-----------------------------------|------------------------------------|---------------------------------|-----------------| | VNI4140K | V _{CC} -41 V | 0.08 Ω | 0.7 A | 41 V | - 1. Per channel. - Output current: 0.7 A per channel - Shorted load protections - Junction overtemperature protection - Case overtemperature protection for thermal independence of the channels - Thermal case shutdown restart not simultaneous for the various channels - Protection against loss of ground - Current limitation - Undervoltage shutdown - Open drain diagnostic outputs - 3.3 V CMOS/TTL compatible inputs - Fast demagnetization of inductive loads - Conforms to IEC 61131-2 - ESD according to IEC 61000-4-2 up to +/-25 kV Figure 1. Block diagram ### **Description** The VNI4140K is a monolithic device made using STMicroelectronics VIPower technology, intended for driving four independent resistive or inductive loads with one side connected to ground. Active current limitation avoids dropping the system power supply in case of shorted load. Built-in thermal shutdown protects the chip from overtemperature and short-circuit. In overload condition, channel turns OFF and back ON automatically so as to maintain junction temperature between T_{TSD} and T_R. If this condition makes case temperature reach T_{CSD}, overloaded channel is turned OFF and will restartonly when case temperature has decreased down to T_{CR}. In case of more than one channel in overload, re-start of the overloaded channels will not be simultaneous, in order to avoid high peak current from the supply. Non overloaded channels continue to operate normally. The open drain diagnostics outputs indicates overtemperature conditions. March 2012 Doc ID 14174 Rev 10 1/25 Contents VNI1440K ## **Contents** | 1 | Pin connection | 3 | |----|-----------------------------------|----| | 2 | Maximum ratings | | | 3 | Electrical characteristics | 6 | | 4 | Truth table | 9 | | 5 | Typical application circuit | 9 | | 6 | Switching waveforms | 11 | | 7 | Pin functions | 12 | | 8 | Package and PC board thermal data | | | 9 | Reverse polarity protection | 16 | | 10 | Package mechanical data | 17 | | 11 | Order codes | 23 | | 10 | Povision history | 2/ | VNI1440K Pin connection ### 1 Pin connection Figure 2. Pin connection (top view) Table 1. Pin description | Pin | Name | Description | |-----|-------|--| | Tab | TAB | Exposed tab internally connected to Vcc | | 1 | Vcc | Supply voltage | | 2 | IN1 | Channel 1 input 3.3 V CMOS/TTL compatible | | 3 | STAT1 | Channel 1 status in open drain configuration | | 4 | IN2 | Channel 2 input 3.3 V CMOS/TTL compatible | | 5 | STA2 | Channel 2 status in open drain configuration | | 6 | GND | Device ground connection | | 7 | STAT3 | Channel 3 status in open drain configuration | | 8 | IN3 | Channel 3 input 3.3 V CMOS/TTL compatible | | 9 | STAT4 | Channel 4 status in open drain configuration | | 10 | IN4 | Channel 4 input 3.3 V CMOS/TTL compatible | | 11 | NC | | | 12 | NC | | | 13 | OUT4 | Channel 4 power stage output, internally protected | | 14 | OUT4 | Channel 4 power stage output, internally protected | | 15 | OUT4 | Channel 4 power stage output, internally protected | | 16 | OUT3 | Channel 3 power stage output, internally protected | | 17 | OUT3 | Channel 3 power stage output, internally protected | Doc ID 14174 Rev 10 3/25 Pin connection VNI1440K Table 1. Pin description (continued) | Pin | Name | Description | |-----|------|--| | 18 | OUT3 | Channel 3 power stage output, internally protected | | 19 | OUT2 | Channel 2 power stage output, internally protected | | 20 | OUT2 | Channel 2 power stage output, internally protected | | 21 | OUT2 | Channel 2 power stage output, internally protected | | 22 | OUT1 | Channel 1 power stage output, internally protected | | 23 | OUT1 | Channel 1 power stage output, internally protected | | 24 | OUT1 | Channel 1 power stage output, internally protected | VNI1440K Maximum ratings # 2 Maximum ratings Table 2. Absolute maximum rating | Symbol | Parameter | Value | Unit | |-------------------|--|--------------------|------| | V _{CC} | Power supply voltage | 41 | V | | -V _{CC} | Reverse supply voltage | -0.3 | V | | I _{GND} | DC ground reverse current | -250 | mA | | I _{OUT} | Output current (continuos) | Internally limited | Α | | I _R | Reverse output current (per channel) | -5 | Α | | I _{IN} | Input current (per channel) | ± 10 | mA | | V _{IN} | Input voltage | +V _{CC} | V | | V _{STAT} | Status pin voltage | +V _{CC} | V | | I _{STAT} | Status pin current | ± 10 | mA | | V _{ESD} | Electrostatic discharge (R = 1.5 kΩ; C = 100 pF) | 2000 | V | | E _{AS} | Single pulse avalanche energy per channel not simultaneously | 300 | mJ | | P _{TOT} | Power dissipation at T _c = 25 °C | Internally limited | W | | T _J | Junction operating temperature | Internally limited | °C | | T _{STG} | Storage temperature | -55 to 150 | °C | ### 2.1 Thermal data Table 3. Thermal data | Symbol | mbol Parameter | | Value | Unit | |---------------------|--------------------------------------|-----|---------------|------| | R _{th(JC)} | Thermal resistance junction-case (1) | Max | 2 | °C/W | | R _{th(JA)} | Thermal resistance junction-ambient | Max | see Figure 11 | °C/W | ^{1.} Per channel Electrical characteristics VNI1440K ### 3 Electrical characteristics 10.5 V < V_{CC} < 36 V; -25 °C < T_J < 125 °C; unless otherwise specified Table 4. Power section | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |-----------------------|--------------------------------|--|------|------------|----------------|----------| | Vcc | Supply voltage | | 10.5 | | 36 | V | | R _{DS(on)} | On-state resistance | I_{OUT} = 0.5 A at T_J = 25 °C I_{OUT} = 0.5 A | | | 0.080
0.140 | Ω
Ω | | V _{clamp} | | I _s = 20 mA | 41 | 45 | 52 | V | | I _S | Supply current | All channel in OFF state ON state with $V_{IN} = 5 \text{ V}$ $(T_J = 125 \text{ °C})$ | | 250
2.4 | 4 | μA
mA | | I _{LGND} | Output current at turn-
off | $V_{CC} = V_{STAT} = V_{IN} = V_{GND} = 24 \text{ V}, V_{OUT} = 0 \text{ V}$ | | | 1 | mA | | V _{OUT(OFF)} | Off state output voltage | V _{IN} = 0 V and I _{OUT} = 0 A | | | 1 | V | | I _{OUT(OFF)} | Off state output current | V _{IN} = V _{OUT} = 0 V | 0 | | 5 | μА | | F _{CP} | Charge pump frequency | Channel in ON state (1) | _ | 1450 | | kHz | ^{1.} To cover EN55022 class A and class B normative. V_{CC} = 24 V; -25 °C < T_J < 125 °C, R_L = 48 Ω input rise time < 0.1 μs Table 5. Switching | Symbol | Parameter | Min | Тур | Max | Unit | |-----------------------|------------------------|-----|-----|-----|------| | t _{d(ON)} | Turn on delay | - | 20 | - | μs | | t _r | Rise time | - | 10 | - | μs | | t _{d(OFF)} | Turn off | | 30 | | μs | | t _f | Fall time | - | 8 | - | μs | | dV/dt _(ON) | Turn on voltage slope | | 3 | | V/µs | | dV/dt(off) | Turn off voltage slope | - | 4 | - | V/µs | 6/25 Doc ID 14174 Rev 10 Table 6. Logical input | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |----------------------|--------------------------|------------------------|------|------|-----|------| | V _{IL} | Input low level voltage | | | | 0.8 | V | | V_{IH} | Input high level voltage | | 2.20 | | | ٧ | | V _{I(HYST)} | Input hysteresis voltage | | | 0.15 | | V | | | Input ourrent | V _{IN} = 15 V | | | 10 | | | IN | Input current | V _{IN} = 36 V | | | 210 | μΑ | Table 7. Protection and diagnostic | Symbol | Parameter | Test condition | Min | Тур | Max | Unit | |---------------------|-------------------------------|--|-------------------------|-------------------------|-------------------------|------| | V _{STAT} | Status voltage output low | I _{STAT} = 1.6 mA | | | 0.6 | V | | V _{USD} | Undervoltage protection | | 7 | | 10.5 | V | | V _{USDHYS} | Undervoltage hysteresis | | 0.4 | 0.5 | | V | | I _{LIM} | DC short-circuit current | $V_{CC} = 24 \text{ V}; R_{LOAD} < 10 \text{ m}\Omega$ | 0.7 | 1 | 1.7 | Α | | I _{PEAK} | Maximum DC output current | Dynamic load | | 1.3 | | Α | | Hyst | Tracking limits | | | 0.2 | | Α | | I _{LSTAT} | Status leakage current | V _{CC} = V _{STAT} = 36 V | | 30 | | μΑ | | T _{TSD} | Junction shutdown temperature | | 150 | 170 | 190 | °C | | T _R | Junction reset temperature | | 135 | | | °C | | T _{HIST} | Junction thermal hysteresis | | 7 | 15 | | °C | | T _{CSD} | Case shutdown temperature | | 125 | 130 | 135 | °C | | T _{CR} | Case reset temperature | | 110 | | | °C | | T _{CHYST} | Case thermal hysteresis | | 7 | 15 | | °C | | V _{demag} | Output voltage at turn-OFF | I _{OUT} = 0.5 A; L _{LOAD} >= 1 mH | V _{CC} -
41 | V _{CC} -
45 | V _{CC} -
52 | V | Electrical characteristics VNI1440K Figure 3. Current and voltage conventions VNI1440K Truth table ## 4 Truth table Table 8. Truth table | Condition | INPUTn | OUTPUTn | STATUSn | |----------------------|--------|---------|---------| | Normal operation | L | L | H | | | H | H | H | | Overtemperature | L | L | H | | | H | L | L | | Undervoltage | L | L | X | | | H | L | X | | Shorted load | L | L | H | | (Current limitation) | H | X | H | ## 5 Typical application circuit Figure 5. Thermal behavior #### **Switching waveforms** 6 Doc ID 14174 Rev 10 Pin functions VNI1440K ## 7 Pin functions Figure 7. Input circuit Figure 8. Status circuit 12/25 Doc ID 14174 Rev 10 VNI1440K Pin functions Figure 9. Charge pump switching frequency (typical) vs temperature ### 8 Package and PC board thermal data ### 8.1 VNI4140K thermal data Figure 10. VNI4140K PC board Note: Layout condition of Rth and Zth measurements (PCB: Double layer, Thermal Vias, FR4 area = 77 mm x 86 mm, PCB thickness=1.6 mm, Cu thickness = 70 mm (front and back side), Copper areas: from minimum pad lay-out to 8 cm^2). Figure 12. VNI4140K thermal impedance junction ambient single pulse (one channel on) ### 9 Reverse polarity protection This schematic can be used with any type of load. The following is an indication on how to dimension the R_{GND} resistor. $$R_{GND} = (-V_{CC}) / (-I_{GND})$$ where $-I_{\mbox{\footnotesize GND}}$ is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device datasheet. Power dissipation in R_{GND} (when V_{CC} < 0: during reverse polarity situations) is: $$PD = (-V_{CC})^2 / R_{GND}$$ Note: In normal condition (no reverse polarity) due to the diode there will be a voltage drop between GND of the device and GND of the system. Figure 13. Reverse polarity protection ## 10 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Table 9. PowerSSO-24 mechanical data | Combal | mm | | | | | |--------|-------|------|-------|--|--| | Symbol | Min. | Тур. | Max. | | | | A | 2.15 | | 2.47 | | | | A2 | 2.15 | | 2.40 | | | | a1 | 0 | | 0.075 | | | | b | 0.33 | | 0.51 | | | | С | 0.23 | | 0.32 | | | | D | 10.10 | | 10.50 | | | | Е | 7.4 | | 7.6 | | | | е | | 0.8 | | | | | e3 | | 8.8 | | | | | G | | | 0.1 | | | | G1 | | | 0.06 | | | | Н | 10.1 | | 10.5 | | | | h | | | 0.4 | | | | L | 0.55 | | 0.85 | | | | N | | | 10deg | | | | Х | 4.1 | | 4.7 | | | | Υ | 6.5 | | 7.1 | | | Figure 14. PowerSSO-24 package dimensions 18/25 Doc ID 14174 Rev 10 Figure 15. PowerSSO-24 tube shipment (no suffix) Table 10. PowerSSO-24 tube shipment | Base quantity | 49 | |---------------------|------| | Bulk quantity | 1225 | | Tube length (± 0.5) | 532 | | Α | 3.5 | | В | 13.8 | | C (± 0.1) | 0.6 | Note: All dimensions are in mm. Figure 16. PowerSSO-24 reel shipment (suffix "TR") Table 11. PowerSSO-24 reel dimensions | Base quantity | 1000 | |---------------|------| | Bulk quantity | 1000 | | A (max) | 330 | | B (min) | 1.5 | | C (± 0.2) | 13 | | F | 20.2 | | G (2 ± 0) | 24.4 | | N (min) | 100 | | T (max) | 30.4 | Figure 17. PowerSSO-24™ tape dimensions Table 12. PowerSSO-24™ tape dimensions | Tape width | W | 24 | |-------------------|------------|------| | Tape hole spacing | P0 (± 0.1) | 4 | | Component spacing | Р | 12 | | Hole diameter | D (± 0.05) | 1.55 | | Hole diameter | D1 (min) | 1.5 | | Hole position | F (± 0.1) | 11.5 | | Compartment depth | K (max) | 2.85 | | Hole spacing | P1 (± 0.1) | 2 | Note: According to electronic industries association (EIA) Standard 481 rev. A, Feb 1986 57 Doc ID 14174 Rev 10 21/25 Figure 18. VN14140k suggested footprint Note: STMicroelectronics is not responsible for any PCB related issues. The footprint shown in the above figure is a suggestion which might not be in line to the customer PCB supplier design rules. All dimensions are in mm. VNI1440K Order codes ## 11 Order codes Table 13. Order codes | Order codes | Package | Packaging | |-------------|-------------|---------------| | VNI4140K | PowerSSO-24 | Tube | | VNI4140KTR | PowerSSO-24 | Tape and reel | Revision history VNI1440K ## 12 Revision history Table 14. Document revision history | Date | Revision | Changes | | |-------------|----------|---|--| | 16-Nov-2007 | 1 | Initial release | | | 26-Nov-2007 | 2 | Updated electrical parameters values | | | 08-Jul-2008 | 3 | Inserted: Figure 4 on page 9 and Section 9: Reverse polarity protection on page 16 | | | 08-Apr-2008 | 4 | Added I _{LGND} parameter in <i>Table 4 on page 6</i> | | | 27-Aug-2009 | 5 | Updated Section 9: Reverse polarity protection | | | 09-Dec-2009 | 6 | Added Section 10: Conformity to IEC 61000-4-2 ESD immunity test | | | 15-Apr-2010 | 7 | Updated Table 5 on page 6 | | | 06-Feb-2012 | 8 | Inserted feature: Conformity to IEC 61000-4-2 ESD immunity test in cover page. Removed chapter: Conformity to IEC 61000-4-2 ESD immunity test. | | | 05-Mar-2012 | 9 | Suggested footprint inserted. In <i>Table 4.</i> parameter I _{LGND} has been added. | | | 19-Mar-2012 | 10 | Minor text changes. | | 24/25 Doc ID 14174 Rev 10 #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 477 Doc ID 14174 Rev 10 25/25