

BIPOLAR ANALOG INTEGRATED CIRCUIT $\mu PC3226TB$

5 V, SILICON GERMANIUM MMIC MEDIUM OUTPUT POWER AMPLIFIER

DESCRIPTION

The μ PC3226TB is a silicon germanium (SiGe) monolithic integrated circuit designed as IF amplifier for DBS tuners. This IC is manufactured using our 50 GHz f_{max} UHS2 (<u>U</u>Itra <u>High</u> <u>Speed</u> Process) SiGe bipolar process.

FEATURES

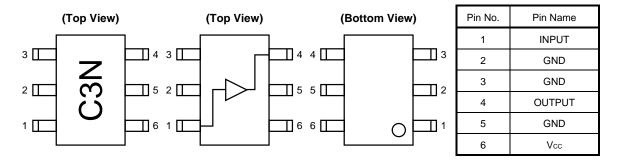
Low current	: Icc = 15.5 mA TYP. @ Vcc = 5.0 V
 Medium output power 	: Po (sat) = +13.0 dBm TYP. @ f = 1.0 GHz
	: Po (sat) = +9.0 dBm TYP. @ f = 2.2 GHz
High linearity	: Po (1dB) = +7.5 dBm TYP. @ f = 1.0 GHz
	: Po (1dB) = +5.7 dBm TYP. @ f = 2.2 GHz
Power gain	: G _P = 25.0 dB TYP. @ f = 1.0 GHz
	: G _P = 26.0 dB TYP. @ f = 2.2 GHz
Noise Figure	: NF = 5.3 dB TYP. @ f = 1.0 GHz
	: NF = 4.9 dB TYP. @ f = 2.2 GHz
 Supply voltage 	: Vcc = 4.5 to 5.5 V
Port impedance	: input/output 50 Ω

APPLICATIONS

• IF amplifiers in LNB for DBS converters etc.

ORDERING INFORMATION

Part Number	Order Number	Package	Marking	Supplying Form
<i>µ</i> РС3226ТВ-Е3	μΡC3226TB-E3-A	6-pin super minimold (Pb-Free) ^{№te}	C3N	Embossed tape 8 mm wide. 1, 2, 3 pins face the perforation side of the tape. Qty 3 kpcs/reel.


Note With regards to terminal solder (the solder contains lead) plated products (conventionally plated), contact your nearby sales office.

Remark To order evaluation samples, please contact your nearby sales office Part number for sample order: µPC3226TB

Caution Observe precautions when handling because these devices are sensitive to electrostatic discharge.

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version. Not all devices/types available in every country. Please check with local NEC Compound Semiconductor Devices representative for availability and additional information.

PIN CONNECTIONS

PRODUCT LINE-UP OF 5 V-BIAS SILICON MMIC MEDIUM OUTPUT POWER AMPLIFIER (TA = +25°C, f = 1 GHz, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω)

Part No.	fu (GHz)	Po _(sat) (dBm)	G⊦ (dB)	NF (dB)	Icc (mA)	Package	Marking
μPC2708TB	2.9	+10.0	15	6.5	26	6-pin super minimold	C1D
μPC2709TB	2.3	+11.5	23	5.0	25		C1E
μPC2710TB	1.0	+13.5	33	3.5	22		C1F
μPC2776TB	2.7	+8.5	23	6.0	25		C2L
μPC3223TB	3.2	+12.0	23	4.5	19		C3J
μPC3225TB	2.8	+15.5 Note	32.5 Note	3.7 Note	24.5		C3M
μPC3226TB	3.2	+13.0	25	5.3	15.5		C3N

Note μ PC3225TB is f = 0.95 GHz

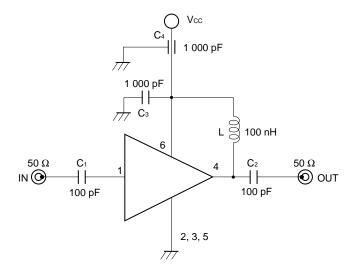
Remark Typical performance. Please refer to ELECTRICAL CHARACTERISTICS in detail.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Ratings	Unit
Supply Voltage	Vcc	T _A = +25°C	6.0	V
Total Circuit Current	Icc	T _A = +25°C	40	mA
Power Dissipation	P⊳	T _A = +85°C Note	270	mW
Operating Ambient Temperature	TA		-40 to +85	°C
Storage Temperature	Tstg		–55 to +150	°C
Input Power	Pin	T _A = +25°C	+10	dBm

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB

RECOMMENDED OPERATING RANGE


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Supply Voltage	Vcc		4.5	5.0	5.5	V
Operating Ambient Temperature	TA		-40	+25	+85	°C

ELECTRICAL CHARACTERISTICS (T_A = +25°C, V_{CC} = V_{out} = 5.0 V, Z_S = Z_L = 50 Ω)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	lcc	No input signal	12.5	15.5	19.5	mA
Power Gain 1	G⊳1	f = 0.1 GHz, P _{in} = -30 dBm	22.0	24.0	26.0	dB
Power Gain 2	G⊧2	f = 1.0 GHz, P _{in} = -30 dBm	23.0	25.0	27.5	
Power Gain 3	G⊦3	f = 1.8 GHz, P _{in} = -30 dBm	23.0	26.0	29.0	
Power Gain 4	G⊳4	f = 2.2 GHz, P _{in} = -30 dBm	23.0	26.0	29.0	
Power Gain 5	G⊳5	f = 2.6 GHz, P _{in} = -30 dBm	22.5	25.5	29.0	
Power Gain 6	GP6	f = 3.0 GHz, P _{in} = -30 dBm	22.0	25.0	28.5	
Saturated Output Power 1	Po (sat) 1	f = 1.0 GHz, P _{in} = -2 dBm	+10.0	+13.0	-	dBm
Saturated Output Power 2	Po (sat) 2	f = 2.2 GHz, P _{in} = -8 dBm	+6.0	+9.0	-	
Gain 1 dB Compression Output Power 1	Po (1 dB) 1	f = 1.0 GHz	+5.0	+7.5	-	dBm
Gain 1 dB Compression Output Power 2	Po (1 dB) 2	f = 2.2 GHz	+3.0	+5.7	-	
Noise Figure 1	NF1	f = 1.0 GHz	-	5.3	6.0	dB
Noise Figure 2	NF2	f = 2.2 GHz	-	4.9	6.0	
Isolation 1	ISL1	f = 1.0 GHz, Pin = -30 dBm	31	34	-	dB
Isolation 2	ISL2	f = 2.2 GHz, Pin = -30 dBm	33	36	-	
Input Return Loss 1	RLin1	f = 1.0 GHz, Pin = -30 dBm	10.0	14.0	-	dB
Input Return Loss 2	RLin2	f = 2.2 GHz, Pin = -30 dBm	9.0	13.0	-	
Output Return Loss 1	RL _{out} 1	f = 1.0 GHz, Pin = -30 dBm	10.0	13.0	-	dB
Output Return Loss 2	RLout2	f = 2.2 GHz, Pin = -30 dBm	10.0	13.0	-	
Input 3rd Order Distortion Intercept Point 1	IIP31	f1 = 1 000 MHz, f2 = 1 001 MHz, P _{in} = -30 dBm	-	-5.0	-	dBm
Input 3rd Order Distortion Intercept Point 2	IIP32	f1 = 2 200 MHz, f2 = 2 201 MHz, P _{in} = -30 dBm	-	-11.0	-	
Output 3rd Order Distortion Intercept Point 1	OIP₃1	f1 = 1 000 MHz, f2 = 1 001 MHz, P _{in} = -30 dBm	-	+20.0	-	dBm
Output 3rd Order Distortion Intercept Point 2	OIP ₃ 2	f1 = 2 200 MHz, f2 = 2 201 MHz, P _{in} = -30 dBm	-	+15.0	-	
2nd Order Intermodulation Distortion	IM ₂	f1 = 1 000 MHz, f2 = 1 001 MHz, P _{in} = -30 dBm	-	43.0	-	dBc
K factor 1	K1	f = 1.0 GHz	-	1.4	-	-
K factor 2	K2	f = 2.2 GHz	_	1.6	-	_

NEC

TEST CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

COMPONENTS OF TEST CIRCUIT FOR MEASURING ELECTRICAL CHARACTERISTICS

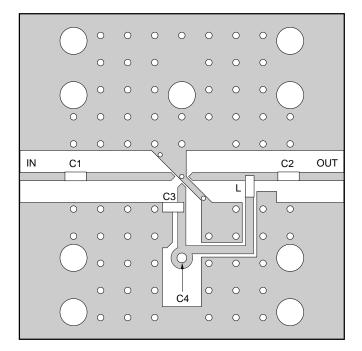
	Туре	Value
C1, C2	Chip Capacitor	100 pF
C3	Chip Capacitor	1 000 pF
C4	Feed-through Capacitor	1 000 pF
L	Chip Inductor	100 nH

INDUCTOR FOR THE OUTPUT PIN

The internal output transistor of this IC, to output medium power. To supply current for output transistor, connect an inductor between the Vcc pin (pin 6) and output pin (pin 4). Select inductance, as the value listed above.

The inductor has both DC and AC effects. In terms of DC, the inductor biases the output transistor with minimum voltage drop to output enable high level. In terms of AC, the inductor makes output-port impedance higher to get enough gain. In this case, large inductance and Q is suitable.

CAPACITORS FOR THE Vcc, INPUT AND OUTPUT PINS


Capacitors of 1 000 pF are recommendable as the bypass capacitor for the Vcc pin and the coupling capacitors for the input and output pins.

The bypass capacitor connected to the Vcc pin is used to minimize ground impedance of Vcc pin. So, stable bias can be supplied against Vcc fluctuation.

The coupling capacitors, connected to the input and output pins, are used to cut the DC and minimize RF serial impedance. Their capacitances are therefore selected as lower impedance against a 50 Ω load. The capacitors thus perform as high pass filters, suppressing low frequencies to DC.

To obtain a flat gain from 100 MHz upwards, 1 000 pF capacitors are used in the test circuit. In the case of under 10 MHz operation, increase the value of coupling capacitor such as 10 000 pF. Because the coupling capacitors are determined by equation, $C = 1/(2 \pi R fc)$.

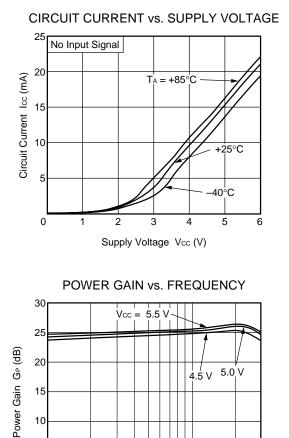
ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

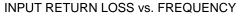
COMPONENT LIST

	Value
C1, C2	100 pF
C3, C4	1 000 pF
L1	100 nH

Notes

- 1. $30 \times 30 \times 0.4$ mm double sided copper clad polyimide board.
- 2. Back side: GND pattern
- 3. Solder plated on pattern
- 4. oO: Through holes

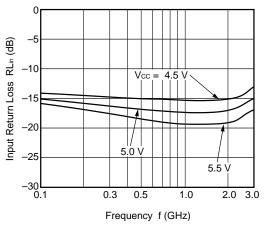

15


10

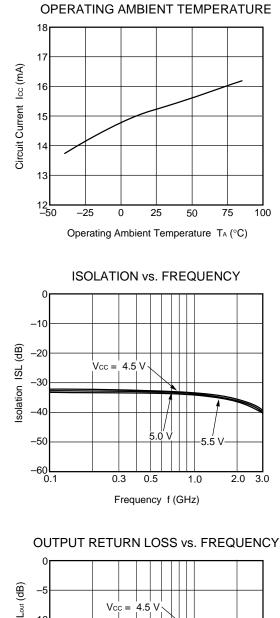
5

0L 0.1

TYPICAL CHARACTERISTICS (TA = +25°C, Vcc = Vout = 5.0 V, Zs = ZL = 50 Ω, unless otherwise specified)

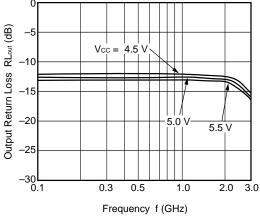

0.5

Frequency f (GHz)


2.0 3.0

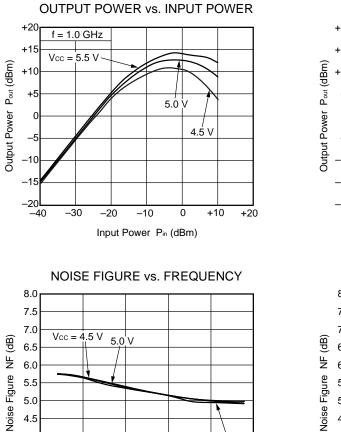
1.0

0.3

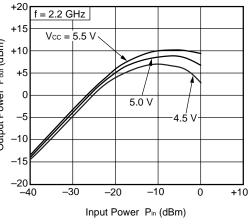


Remark The graphs indicate nominal characteristics.

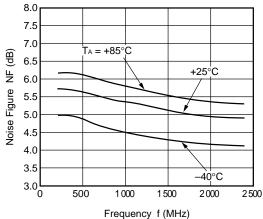
CURCUIT CURRENT vs.



4.0


3.5

3.0L

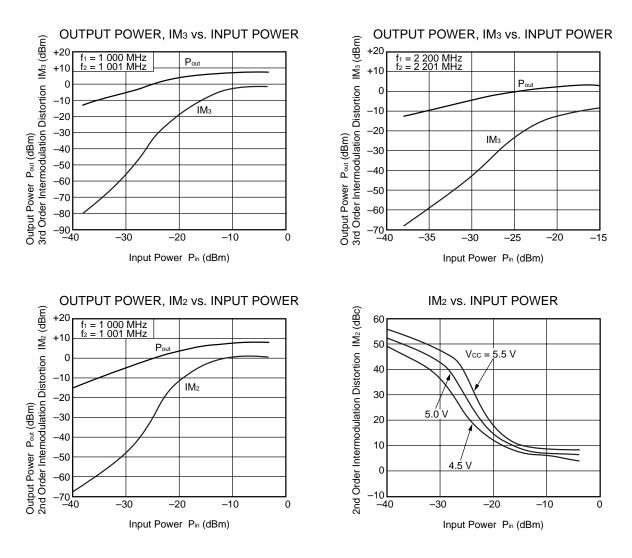

500

OUTPUT POWER vs. INPUT POWER

NOISE FIGURE vs. FREQUENCY

Remark The graphs indicate nominal characteristics.

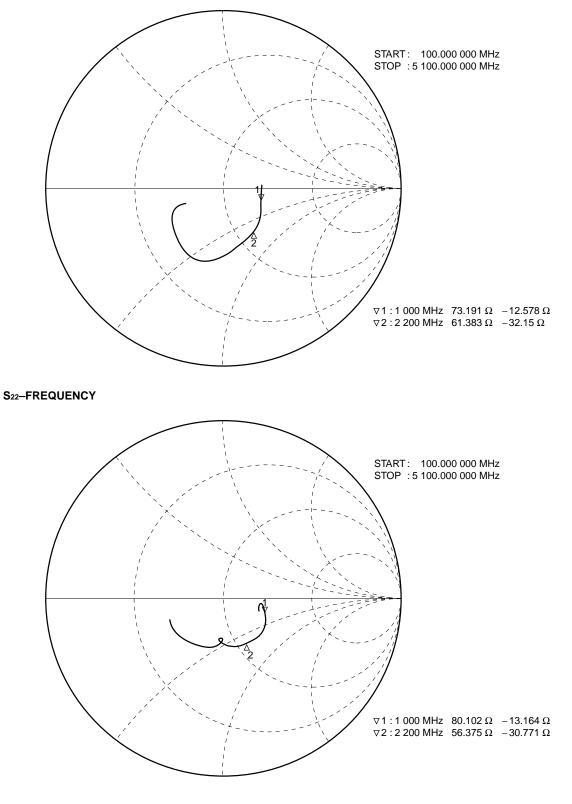
Frequency f (MHz)


1 500

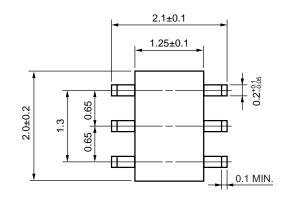
1 0 0 0

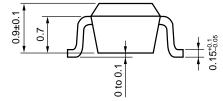
5.5 V

2 500


2000

Remark The graphs indicate nominal characteristics.


S-PARAMETERS (TA = +25°C, Vcc = Vout = 5.0 V, Pin = -30 dBm)


S11-FREQUENCY

PACKAGE DIMENSIONS

6-PIN SUPER MINIMOLD (UNIT: mm)

NOTES ON CORRECT USE

- (1) Observe precautions for handling because of electro-static sensitive devices.
- (2) Form a ground pattern as widely as possible to minimize ground impedance (to prevent undesired oscillation).All the ground terminals must be connected together with wide ground pattern to decrease impedance difference.
- (3) The bypass capacitor should be attached to the Vcc line.
- (4) The inductor (L) must be attached between Vcc and output pins. The inductance value should be determined in accordance with desired frequency.
- (5) The DC cut capacitor must be attached to input and output pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions		Condition Symbol
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

When the product(s) listed in this document is subject to any applicable import or export control laws and regulation of the authority having competent jurisdiction, such product(s) shall not be imported or exported without obtaining the import or export license.

- The information in this document is current as of May, 2005. The information is subject to change without notice. For actual design-in, refer to the latest publications of NEC's data sheets or data books, etc., for the most up-to-date specifications of NEC semiconductor products. Not all products and/or types are available in every country. Please check with an NEC sales representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without prior written consent of NEC. NEC assumes no responsibility for any errors that may appear in this document.
- NEC does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from the use of NEC semiconductor products listed in this document or any other liability arising from the use of such products. No license, express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC or others.
- Descriptions of circuits, software and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software and information in the design of customer's equipment shall be done under the full responsibility of customer. NEC assumes no responsibility for any losses incurred by customers or third parties arising from the use of these circuits, software and information.
- While NEC endeavours to enhance the quality, reliability and safety of NEC semiconductor products, customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of damage to property or injury (including death) to persons arising from defects in NEC semiconductor products, customers must incorporate sufficient safety measures in their design, such as redundancy, fire-containment, and anti-failure features.
- NEC semiconductor products are classified into the following three quality grades:

"Standard", "Special" and "Specific". The "Specific" quality grade applies only to semiconductor products developed based on a customer-designated "quality assurance program" for a specific application. The recommended applications of a semiconductor product depend on its quality grade, as indicated below. Customers must check the quality grade of each semiconductor product before using it in a particular application.

- "Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- "Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- "Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems and medical equipment for life support, etc.

The quality grade of NEC semiconductor products is "Standard" unless otherwise expressly specified in NEC's data sheets or data books, etc. If customers wish to use NEC semiconductor products in applications not intended by NEC, they must contact an NEC sales representative in advance to determine NEC's willingness to support a given application.

(Note)

- (1) "NEC" as used in this statement means NEC Corporation, NEC Compound Semiconductor Devices, Ltd. and also includes its majority-owned subsidiaries.
- (2) "NEC semiconductor products" means any semiconductor product developed or manufactured by or for NEC (as defined above).

M8E 00.4-0110

▶ For further information, please contact

techinfo@ml.ncsd.necel.com (technical) Sales Division TEL: +81-44-435-1573 FAX: +81-44-435-1579

NEC Compound Semiconductor Devices Hong Kong Limited

E-mail: ncsd-hk@elhk.nec.com.hk (sales, technical and general)

	looning (ouroo, tooningui e	and general)
Hong Kong Head Office	TEL: +852-3107-7303	FAX: +852-3107-7309
Taipei Branch Office	TEL: +886-2-8712-0478	FAX: +886-2-2545-3859
Korea Branch Office	TEL: +82-2-558-2120	FAX: +82-2-558-5209

 NEC Electronics (Europe) GmbH
 http://www.ee.nec.de/

 TEL: +49-211-6503-0
 FAX: +49-211-6503-1327

California Eastern Laboratories, Inc. http://www.cel.com/ TEL: +1-408-988-3500 FAX: +1-408-988-0279