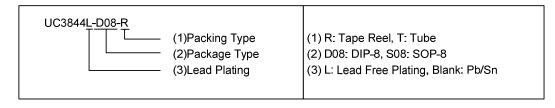
UC3844/45

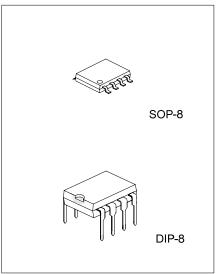
LINEAR INTEGRATED CIRCUIT

HIGH PERFORMANCE CURRENT MODE PWM CONTROLLERS

■ DESCRIPTION

The UTC **UC3844/3845** are high performance fixed frequency current mode controllers that specifically designed for Off-Line and DC to DC converter applications with minimal external parts count.

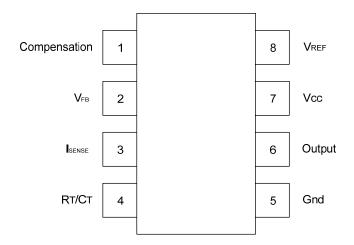

The differences between **UC3844** and **UC3845** are the maximum duty cycle ranges and under-voltage lockout thresholds. The **UC3844** ideally suited to off-line applications with UVLO thresholds of $16V_{(ON)}$ and $10V_{(OFF)}$, and **UC3845** has UVLO thresholds of $8.5V_{(ON)}$ and $7.6V_{(OFF)}$ for lower voltage applications.


■ FEATURES

- * Operation output switching frequency up to 500 kHz
- * Output deadtime adjustable from 50% to 70%
- * Automatic feed forward compensation
- * Latching PWM for cycle-by-cycle current limiting
- * High current totem pole output
- * Internally trimmed reference with under voltage lockout
- * UVLO with hysteresis
- * Low startup and operating current

ORDERING INFORMATION

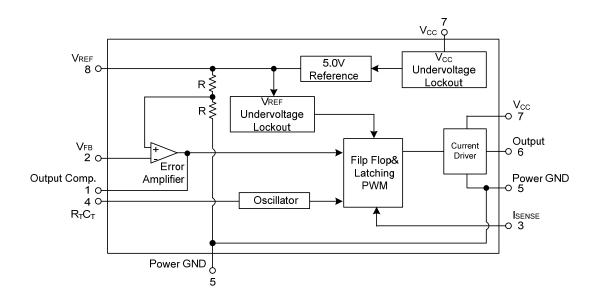
Order	Number	Package	Packing	
Normal	Lead Free Plating	Fackage	Facking	
UC3844-D08-T	UC3844L-D08-T	44L-D08-T DIP-8 Tube		
UC3844-S08-R	UC3844L-S08-R	SOP-8	Tape Reel	
UC3844-S08-T	UC3844L-S08-T	SOP-8	Tube	
UC3845-D08-T	UC3845L-D08-T	DIP-8	Tube	
UC3845-S08-R	UC3845L-S08-R	SOP-8	Tape Reel	
UC3845-S08-T	UC3845L-S08-T	SOP-8	Tube	



*Pb-free plating product number: UC3844L/UC3845L

<u>www.unisonic.com.tw</u> 1 of 7

Downloaded from Datasheet.su


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO	PIN NAME	FUNCTION
1	Compensation	Error amplifier output, this pin is made available for loop compensation.
2	V _{FB}	Voltage Feedback, the inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	Isense	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The Oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_T to Vref and capacitor C_T to ground. Operation to 1 MHz is possible.
5	GND	Power ground.
6	Output	This output directly drives the gate of a power MOSFET. Peak currents up to 1A are sourced and sunk by this pin. The output switches at one-half the oscillator frequency.
7	V_{CC}	Positive supply.
8	V_{REF}	Reference output, provides charging current for capacitor C _T though resistor R _T .

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (Ta=25°C)

PARAMETER		SYMBOL	RATINGS	UNIT
Total Power Supply and Zener Current		(I _{CC} +Iz)	30	mA
Output Current, Source or Sink (Note 2)		I _{OUT}	1.0	Α
Output Energy (Capacitive Load per cycle)	W	5.0	μJ
Current Sense and Voltage feedback Inputs		V_{IN}	-0.3 ~ +5.5	V
Error Amp Output Sink Current		I _{SINK}	10	mA
Davis Dissination	SOP-8	P _D	862	mW
Power Dissipation	DIP-8		1250	mW
Junction Temperature		T_J	+150	°C
Operation Temperature Range		T _{OPR}	0 ~ 70	°C
Storage Temperature Range		T_{STG}	-65 ~ + 150	°C

Note:1.Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Thermal Desistance/ lunction to Air	SOP-8	0	145	°C/W
Thermal Resistance(Junction-to-Air)	DIP-8	θJA	100	°C/W

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V_{CC} =15V, R_T =10k, C_T =3.3nF, 0°C \leq T_A \leq 70°C, unless otherwise specified)

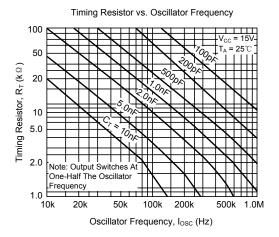
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
REFERENCE SECTION								
Reference Output Voltage		V_{REF}	I _{OUT} =1.0mA,T _J =25 C	4.9	5.0	5.1	V	
Line Regulation		$\triangle V_{OUT}$	V _{CC} =12V ~ 25V		2.0	20	mV	
Load Regulation		$\triangle V_{OUT}$	I _{OUT} =1.0mA ~ 20mA		3.0	25	mV	
Temperature Stability		ts			0.2		mV/°C	
Total Output Variation over Lir Load, Temperature	ne,	V_{REF}		4.82		5.18	V	
Output Noise Voltage		eN	f=10Hz ~ kHz, T _J =25°C		50		μV	
Long Term Stability		S	T _A =125°C for 1000 Hours		5		mV	
Output Short Circuit Current		I _{SC}		-30	-85	-180	mA	
OSCILLATOR SECTION								
Oscillator Voltage Swing		V_{OSC}			1.6		V	
Discharge Current		losg	Vosc=2.0V, TJ=25°C		10.8		mA	
Frequency		f _{osc}	T _J =25°C,	47	52	57	kHz	
requericy			0°C ≤ T _A ≤ 70°C	46		60		
Frequency Change with Voltage	ge	$\Delta f_{OSC}/\Delta V$	V _{CC} =12V ~ 25V		0.2	1.0	%	
Frequency Change with Temp	erature	$\Delta f_{OSC}/\Delta T$	0°C ≤ T _A ≤ 70°C		5.0		%	
ERROR AMPLIFIER SECTIO	N							
Voltage Feedback Input		V_{FB}	V _{OUT} =2.5V	2.42	2.50	2.58	V	
Output Voltage Swing	High	V _{OH}	R _L =15k to ground, V _{FB} =2.3V	5.0	6.2		V	
Output Voltage Swing	Low	V_{OL}	R_L =15k to V_{REF} , V_{FB} =2.7V		0.8	1.1	V	
Output Current	Sink	I _{SINK}	V _{OUT} =1.1V, V _{FB} =2.7V	2.0	12		mA	
Output Current	Source	I _{SOURCE}	V _{OUT} =5.0V, V _{FB} =2.3V	-0.5	-1.0		IIIA	
Input Bias Current		I _{I(BIAS)}	V _{FB} =2.7V		-0.1	-2.0	μΑ	
Open Loop Voltage Gain		G_{VO}	V _{OUT} =2.0V ~ 4.0V	65	90		dB	
Power Supply Rejection Ratio		PSRR	V _{CC} =12V ~ 25V	60	70		dB	
Unity Gain Bandwidth		GB_W	T _J =25°C	0.7	1.0		MHz	

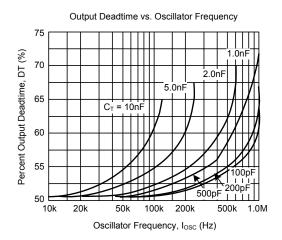
^{2.}Maxmum package power dissipation limits must be observed.

■ ELECTRICAL CHARACTERISTICS(Cont.)

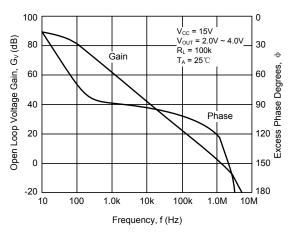
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CURRENT SENSE SECTI	ON						
Current Sense Input Voltage Gain (Note 2 & 3)		G _V		2.85	3.0	3.15	V/V
Maximum Current Sense Ir Threshold (Note 2)	nput	$V_{\text{I(THR)}}$		0.9	1.0	1.1	V
Input Bias Current		I _{I(BIAS)}			-2.0	-10	μА
Power Supply Rejection Ra	atio	PSRR	V _{CC} =12V ~ 25V (Note4)		70		dB
Propagation Delay		t _{PLH(IN/OUT)}			150	300	ns
OUTPUT SECTION							
	Low		I _{SINK} =20mA		0.1	0.4	V
Output Voltage	LOW	V _{OL}	I _{SINK} =200mA		1.6	2.2	
Output Voltage	High	V	I _{SINK} =20mA	13	13.5		V
	підп	V _{OH}	I _{SINK} =200mA	12	13.4		
Output Voltage with U _{VLO} Activated		$V_{OL}(U_{VLO})$	V _{CC} =6.0V, I _{SINK} =1.0mA		0.1	1.1	V
Output Voltage Rise Time		t_R	C _L =1.0nF,T _J =25°C		50	150	ns
Output Voltage Fall Time		t _F	C _L =1.0nF,T _J =25°C		50	150	ns
UNDERVOLTAGE LOCKO	OUT SECTION	ON					
Startup Threshold	UC3844	V _{THR}		14.5	16.0	17.5	V
Startup Threshold	UC3845	VTHR		7.8	8.4	9.0	
Minimum Operating	UC3844	V		8.5	10.0	11.5	V
Voltage After Turn-On	UC3845	$V_{CC(MIN)}$		7.0	7.6	8.2	
PWM SECTION							
Duty Cyala	Max	DСмах		47	48	50	%
Duty Cycle	Min	DCMIN				0	%
TOTAL DEVICE							
Power Supply Zener Voltage		Vz	I _{CC} =25mA	30	36	-	V
Power Supply Current	UC3845		V _{CC} =6.5V		0.5	1.0	mΛ
(Note 4)	UC3844	I _{cc}	V _{CC} =14V		12	17	mA

Note: 1. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible.

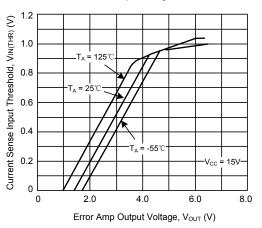

2. This parameter is measured at the latch trip point with V_{FB} =0V.

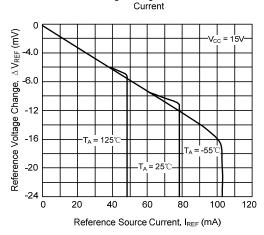

3. Comparator gain is defined as: ΔV Output Compensation

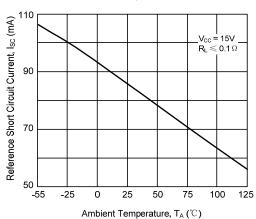
ΔV Current Sense Input


4. Adjust V_{CC} above the startup threshold before setting to 15V.

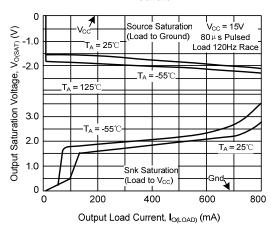
TYPICAL CHARACTERISTICS




Error Amp Open Loop Gain Phase vs. Frequency


Current Sense Input Threshold vs. Error Amp Output Voltage

Reference Voltage Change vs. Reference Source



Reference Short Circuit Current vs. Ambient Temperature

■ TYPICAL CHARACTERISTICS(Cont.)

Output Saturation Voltage vs. Output Load Current

Supply Current vs. Supply Voltage 25 20 Supply Current, Icc (mA) 15 R_T = 10K $C_T = 3.3Nf$ $V_{FB} = 0V$ Isense = 0V 5 T_A = 25°C 0 0 10 30 40

Supply Voltage, V_{CC} (V)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.