AG603-86 InGaP HBT Gain Block

Product Features

- DC 6000 MHz
- +19.5 dBm P1dB at 900 MHz
- +33.5 dBm OIP3 at 900 MHz
- 18.5 dB Gain at 900 MHz
- Single Voltage Supply
- Green SOT-86 SMT Package
- Internally matched to 50 $\boldsymbol{\Omega}$

Applications

- Mobile Infrastructure
- CATV / DBS
- W-LAN / ISM
- RFID
- Defense / Homeland Security
- Fixed Wireless

Specifications (1)

Product Information

Pin No.

1

3

2.4

Product Description

The AG603-86 is a general-purpose buffer amplifier that offers high dynamic range in a low-cost surface-mount package. At 900 MHz, the AG603-86 typically provides 18.5 dB gain, +33.5 dBm OIP3, and +19.5 dBm P1dB. The device combines dependable performance with consistent quality to maintain MTTF values exceeding 100 years at mounting temperatures of +85 °C & is housed in a SOT-8 industry-standard SMT lead-free/green/RoHS-compackage.

The AG603-86 consists of Darlington pair amplifies using the high reliability InGaP/GaAs HBT process and only requires DC-blocking capacitors, a sistor, and an inductive RF choke for operation.

The broadband MMIC amplifier can be a try approximately ap

cical Frformance (1)

Parameter	Units	Min	I y C	<u>у Зах с</u>	Garan ar Units Typical					
Operational Bandwidth	MHz	DC	L >	6000	Frequent	MHz	500	900	1900	2140
Test Frequency	MHz		Les		S22	dB	18.9	18.2	15.9	15.3
Gain	dB	(O ANY			dB	-17	-20	-18	-17
Input Return Loss	dB	\sim	~ 10	S	COP COP	dB	-21	-17	-14	-13
Output Return Loss	dB	22	17		Dutput P1dB	dBm	+19.4	+19.4	+19.2	+19.1
Output IP3 ⁽²⁾	dBm	\leq	+19.40	\mathcal{V}	Output IP3	dBm	+34.1	+33.7	+33.4	+32.8
Output IP2	لم∠dBm	\sim	+3(5)	0	Noise Figure	dB	3.8	3.8	3.9	4.0
Output P1dB	dBn	\bigtriangledown		$R^{>}$						
Noise Figure	$\left(\right)$		V).8	\mathbb{Z}						
Test Frequency	A		S1900 C	3						
Gain	$\langle \rangle$	20	145	16.9						
Output IP3 ⁽²⁾	Jun n	R C	S	ĺ						
Output P1dB	O_{dBn}		<u>8</u> .4							
Device Voltage	v V		5.16							
Device Curren			75							
1. Test conditions: T Supply Voltage $R_{bias} = 1.550 \Omega$ System. 2. 30IP measured w										
suppression the M3 provement of the calculative 30IP using a 2:1 rule. 3. The jung the super state of the calculative of the calculative of the super state of the s										
		9								
	~~~~~~~									
Absolute Maximon Rating										
$\mathcal{O}$	S)	Detin			Ordering I	oforma	tion			
Parame		Ratin			or dering i	iu	uon			
Operatir Case Tel Vo uu	re	-40 to +	85 °C		Dout No.	Decering	4:00			

Part No.	Description
AG603-86	InGaP HBT Gain Block (lead-tin SOT-86 Pkg)
AG603-86G	InGaP HBT Gain Block (lead-free/green/RoHS-compliant SOT-86 Pkg)

Mion which we above any of these parameters may cause permanent damage.

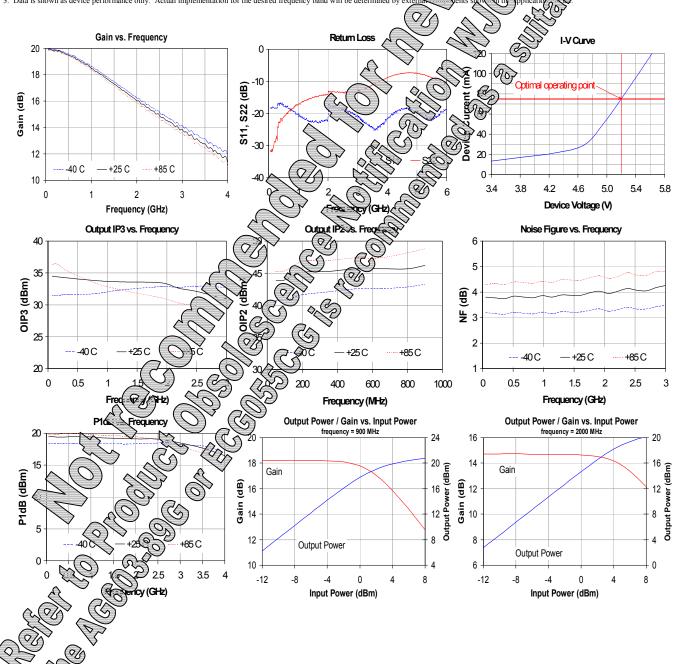
t Power continuous)

Specifications and information are subject to change without notice

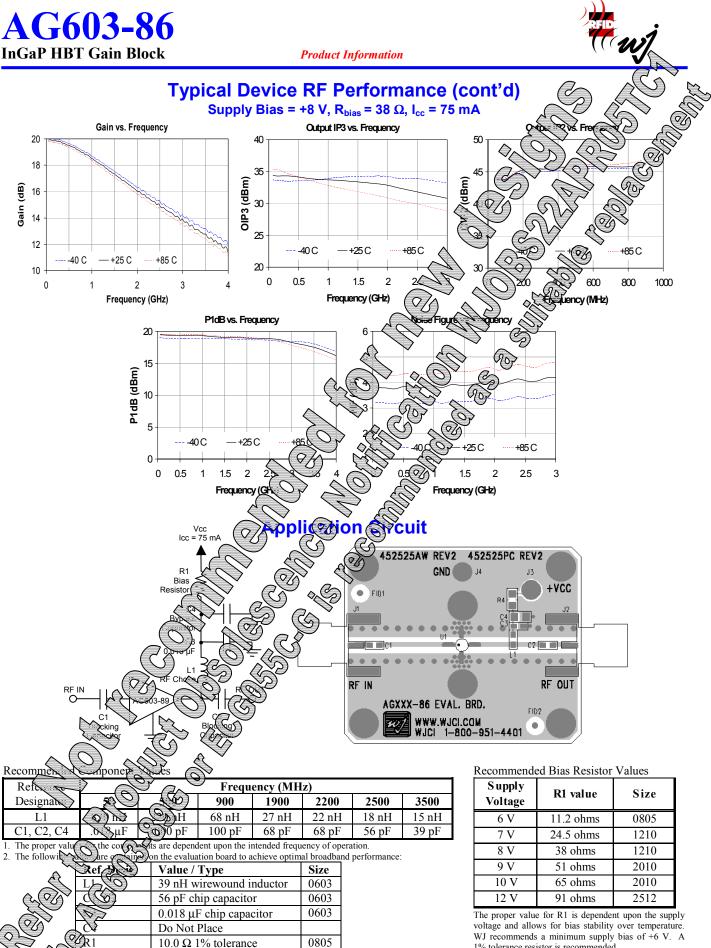
+250° C

+7 V +10 dBm

-55 to +125 °C




**Product Information** 


Typical Device RF Performance Supply Bias = +6 V,  $R_{bias}$  = 11.2  $\Omega$ ,  $I_{cc}$  = 75 mA

Frequency	MHz	100	500	900	1900	2140	2400
S21	dB	19.3	18.9	18.2	15.9	15.3	14.9
S11	dB	-18	-17	-20	-18	-17	-18
S22	dB	-31	-21	-17	-14	-13	-13⁄
Output P1dB	dBm	+19.4	+19.4	+19.4	+19.2	+19.1	0.6
Output IP3	dBm	+34.5	+34.1	+33.7	+33.4	+32.8	6
Noise Figure	dB	3.8	3.8	3.8	3.9	4.0	

1. Test conditions:  $T = 25^{\circ}$  C, Supply Voltage = +6 V, Device Voltage = 5.16 V, Rbias = 11.2  $\Omega$ , Icc = 75 mA typical, 50  $\Omega$  Syster 2. 30IP measured with two tones at an output power of +2 dBm/tone separated by 10 MHz. The suppression on the largest IM3 pc 3. Data is shown as device performance only. Actual implementation for the desired frequency band will be determined by external



Specifications and information are subject to change without notice



WJ recommends a minimum supply bias of +6 V. A 1% tolerance resistor is recommended.

Specifications and information are subject to change without notice

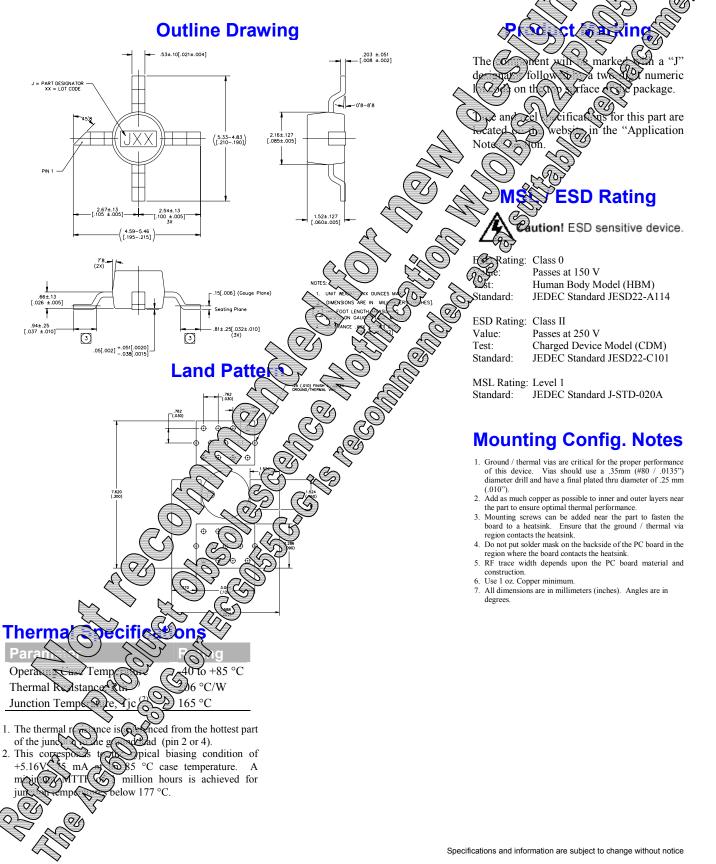
Downloaded from Datasheet.su

AG603-86 **InGaP HBT Gain Block** 

**Product Information** 

### **Typical Device Data**

			Туріса	l Devic	e Data		Ċ		G
S-Parameters (V	$t_{\rm dension} = +5.16^{\circ}$	$V_{Lcc} = 75 \text{ mA}$	$T = 25^{\circ} C$ cali	brated to devic	e leads)				$\searrow$
Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)		521.50	
50	-18.23	174.74	19.89	177.21	-22.60	-0.68	(O)	AN "	- 55
250	-18.28	162.59	19.75	165.56	-22.48	-0.53		\$ 5.67	Ś
500	-17.36	147.85	19.50	151.86	-22.44	-0.61	-X.21	Z-148.15	$\bigcirc$
750	-18.86	130.86	19.09	138.79	-22.46	-1.53	2/19.11	$\mathbb{Y}^{146}$	्र
1000	-20.20	108.49	18.57	126.44	-22.42	$\sim^2$		-144	7
1250	-21.82	84.57	18.05	114.78	-22.30				
1500	-22.73 -22.84	53.36 27.48	17.47 16.86	103.87 93.52	-22.14 -21.87	(2) ~ (		<b>3</b> 5./4	
1750 2000	-21.25	9.33	16.26	83.93	-21.75	-4.47	$\Sigma_{98}^{ro} \wedge C$	2166.54	
2000	-18.04	-0.39	15.69	75.43	-21.40	5 54	$\circ$	-159.08	
2500	-18.33	-7.20	15.34	68.57	-20.8	-5.28	-13.0	-168.98	
2750	-19.57	-12.19	14.80	59.90	-2 07	2.55		177.37	
3000	-21.03	-10.51	14.30	51.45		AP)	AN 33	159.43	
3250	-23.01	-10.01	13.83	43.05	C 80	and a	2.23	143.27	
3500	-24.57	13.25	13.33	34.97	82	-10:08	<b>2</b> 11.07	128.02	
3750	-24.13	41.90	12.78	26.51	-19.65	18.64	-10.02	115.52	
4000	-21.65	64.98	12.28	18.6	> -1925	-22.00	-8./9	106.49	
4250	-19.84	74.82	11.83	$O_{k}$	) -153	-25	-8.01	99.24	
4500	-18.66	82.81	11.40	- Zalo	-	\$-280°	-7.55	94.08	
4750	-18.43	89.31 99.10	10.99	-3.5		5 24	-7.34 -7.50	90.85 88.62	
5000 5250	-19.43 -21.15	99.10 118.11	10.68	$\bigcirc 20,20 \\ 78 ($		-37.98	-7.93	86.82	
5250	-22.30	145.00	10.45		17.55	<b>F</b> -40.47	-8.80	85.75	
5750	-20.49	175.26		-30.29	-17	-44.86	-9.84	84.21	
6000	-18.75	-172.37	$\langle \sigma \rangle$	(Q) 52		-47.67	-11.15	80.32	

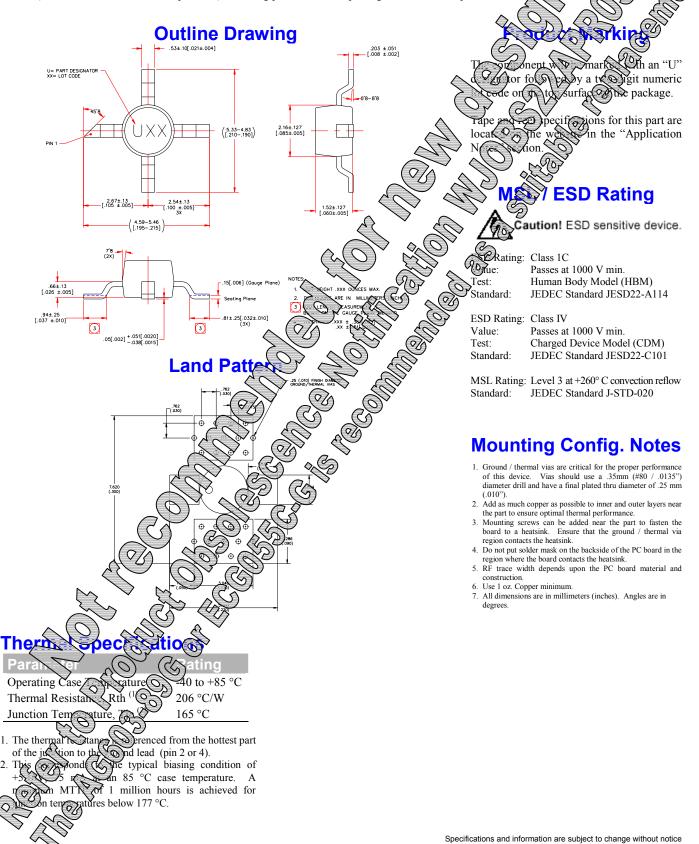

Specifications and information are subject to change without notice



#### **Product Information**



This package may contain lead-bearing materials. The plating material on the leads is S






**Product Information** 

#### AG603-86G (Green / Lead-free Sot-86 Package) Mechanical

This package is lead-free/Green/RoHS-compliant. It is compatible with both lead-free (maximum 260°C reflor (maximum 245°C reflow temperature) soldering processes. The plating material on the pins is annealed



2