<u>TOSHIBA</u>

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VCX2541FT, TC74VCX2541FK, TC74VCX2541FTG

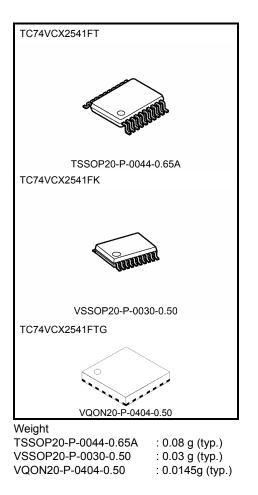
Low-Voltage Octal Bus Buffer with 3.6-V Tolerant Inputs and Outputs

The TC74VCX2541 is a high-performance CMOS octal bus buffer. Designed for use in 1.8-V, 2.5-V or 3.3-V systems, it achieves high-speed operation while maintaining the CMOS low power dissipation.

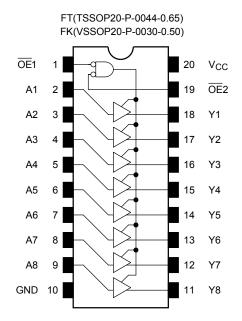
It is also designed with overvoltage tolerant inputs and outputs up to 3.6 V.

This device is a non-inverting 3-state buffer having two active-low output enables. When either $\overline{\text{OE1}}$ or $\overline{\text{OE2}}$ are high, the terminal outputs are in the high-impedance state. This device is designed to be used with 3-state memory address drivers, etc. The 26- Ω series resistor helps reducing output overshoot and undershoot without external resistor.

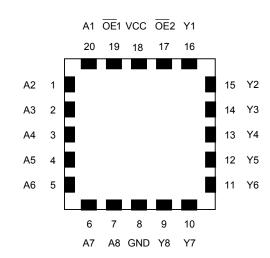
All inputs are equipped with protection circuits against static discharge.

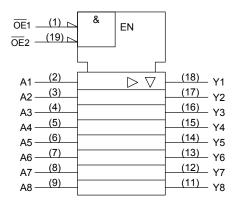

Features (Note 1)

- $26 \cdot \Omega$ series resistors on outputs.
- Low-voltage operation: VCC = 1.8 to 3.6 V
- High-speed operation: tpd = 4.4 ns (max) (VCC = 3.0 to 3.6 V)
 - : $t_{pd} = 5.6 \text{ ns} \text{ (max)} \text{ (V_{CC} = 2.3 to 2.7 V)}$
 - : $t_{pd} = 9.8 \text{ ns} (max) (V_{CC} = 1.8 \text{ V})$
- Output current: $IOH/IOL = \pm 12 \text{ mA} (min) (VCC = 3.0 \text{ V})$
 - $: I_{OH}/I_{OL} = \pm 8 \text{ mA} \text{ (min)} (V_{CC} = 2.3 \text{ V})$
 - $: I_{OH}/I_{OL} = \pm 4 \text{ mA (min)} (V_{CC} = 1.8 \text{ V})$
- Latch-up performance: -300 mA
- ESD performance: Machine model $\geq \pm 200 \text{ V}$ Human body model $\geq \pm 2000 \text{ V}$
- Package: TSSOP


VSSOP (US) VQON

• 3.6-V tolerant function and power-down protection provided on all inputs and outputs


Note 1: When mounting VQON package, the type of recommended flux is RA or RMA.


Pin Assignment (top view)

FTG(VQON20-P-0404-0.50)

IEC Logic Symbol

Truth Table

	Inputs		Outputs
OE1	OE2	An	Outputs
Н	Х	Х	Z
Х	Н	Х	Z
L	L	Н	н
L	L	L	L

X: Don't care

Z: High impedance

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	VIN	-0.5 to 4.6	V
		-0.5 to 4.6 (Note 2)	
DC output voltage	V _{OUT}	-0.5 to $V_{CC} + 0.5$	V
		(Note 3)	
Input diode current	I _{IK}	-50	mA
Output diode current	I _{OK}	±50 (Note 4)	mA
DC output current	lout	±50	mA
Power dissipation	PD	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±100	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: OFF state

Note 3: High or low state. I_{OUT} absolute maximum rating must be observed.

Note 4: $V_{OUT} < GND, V_{OUT} > V_{CC}$

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit	
Power supply voltage	V _{CC}	1.8 to 3.6	V	
Tower supply voltage	VCC	1.2 to 3.6 (Note 2)	v	
Input voltage	V _{IN}	-0.3 to 3.6	V	
Output voltage	Vout	0 to 3.6 (Note 3)	V	
Output voltage	V001	0 to V_{CC} (Note 4)	v	
		±12 (Note 5)		
Output current	I _{OH} /I _{OL}	±8 (Note 6)	mA	
		±4 (Note 7)		
Operating temperature	T _{opr}	-40 to 85	°C	
Input rise and fall time	dt/dv	0 to 10 (Note 8)	ns/V	

- Note 1: The operating ranges are required to ensure the normal operation of the device. Unused inputs and bus inputs must be tied to either VCC or GND. Please connect both bus inputs and the bus outputs with VCC or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.
- Note 2: Data retention only
- Note 3: OFF state
- Note 4: High or low state
- Note 5: $V_{CC} = 3.0$ to 3.6 V
- Note 6: $V_{CC} = 2.3$ to 2.7 V
- Note 7: $V_{CC} = 1.8 V$
- Note 8: $V_{IN} = 0.8$ to 2.0 V, $V_{CC} = 3.0$ V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85°C, 2.7 V < V_{CC} \leq 3.6 V)

Characte	ristics	Symbol	Test	Condition	V _{CC} (V)	Min	Max	Unit
	H-level	V _{IH}		_	2.7 to 3.6	2.0	_	
Input voltage	L-level	VIL		_	2.7 to 3.6	_	0.8	V
				I _{OH} = -100 μA	2.7 to 3.6	V _{CC} - 0.2	_	
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$I_{OH} = -6 \text{ mA}$	2.7	2.2		
				I _{OH} = -8 mA	3.0	2.4		
Output voltage				$I_{OH} = -12 \text{ mA}$	3.0	2.2	—	V
			VIN = VIH or VII	I _{OL} = 100 μA	2.7 to 3.6	_	0.2	
	L-level	Mai		$I_{OL} = 6 \text{ mA}$	2.7	_	0.4	
	L-level	VOL	AIV = AIH OI AIF	$I_{OL} = 8 \text{ mA}$	3.0	_	0.55	
				$I_{OL} = 12 \text{ mA}$	3.0	_	0.8	
Input leakage curre	ent	I _{IN}	V _{IN} = 0 to 3.6 V		2.7 to 3.6	_	±5.0	μA
3-state output OFF	state current	I _{OZ}	$V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$		2.7 to 3.6		±10.0	μΑ
Power-off leakage	current	IOFF	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0		10.0	μA
Quiescent supply current			$V_{IN} = V_{CC}$ or GND		2.7 to 3.6	_	20.0	
		Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \text{ V}$		2.7 to 3.6		±20.0	μA
Increase in I _{CC} pe	r input	∆lcc	$V_{IH} = V_{CC} - 0.6 V$		2.7 to 3.6	_	750	

DC Characteristics (Ta = -40 to 85°C, 2.3 V \leq V_{CC} \leq 2.7 V)

Characteris	stics	Symbol	Test Condition		V _{CC} (V)	Min	Max	Unit	
	H-level	VIH	-		2.3 to 2.7	1.6			
Input voltage	L-level	V _{IL}	-		2.3 to 2.7	_	0.7	V	
				$I_{OH} = -100 \ \mu A$	2.3 to 2.7	V _{CC} - 0.2			
	H-level	V _{OH}	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -4 \text{ mA}$	2.3	2.0	_		
					$I_{OH} = -6 \text{ mA}$	2.3	1.8	_	
Output voltage				$I_{OH} = -8 \text{ mA}$	2.3	1.7	_	V	
			$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 100 μA	$I_{OL} = 100 \ \mu A$	2.3 to 2.7	_	0.2	
	L-level	V _{OL}		$I_{OL} = 6 \text{ mA}$	2.3	_	0.4		
				$I_{OL} = 8 \text{ mA}$	2.3	_	0.6		
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		2.3 to 2.7	_	±5.0	μA	
2 state output OEE	stato ourront	1.0-7	$V_{IN} = V_{IH} \text{ or } V_{IL}$		2.3 to 2.7	_	±10.0	μA	
3-state output OFF state current		loz	V _{OUT} = 0 to 3.6 V		2.3 10 2.7	_	±10.0	μA	
Power-off leakage of	current	IOFF	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0	—	10.0	μA	
Quiescent supply current			$V_{IN} = V_{CC}$ or GND		2.3 to 2.7		20.0	μA	
Quiescent supply ct		Icc	$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \; V$		2.3 to 2.7	_	±20.0	μΛ	

DC Characteristics (Ta = -40 to 85°C, 1.8 V \leq V_{CC} < 2.3 V)

Characteristics		Symbol	Test C	ondition		Min	Max	Unit
					V _{CC} (V)			
Input voltage	H-level	VIH	-	_	1.8 to 2.3	$0.7 \times V_{CC}$	_	v
input voltage	L-level	V _{IL}	-	_	1.8 to 2.3		$0.2 \times V_{CC}$	v
	H-level	Vон	VIN = VIH or VII	I _{OH} = -100 μA	1.8	V _{CC} - 0.2	_	v
Output voltage		011		$I_{OH} = -4 \text{ mA}$	1.8	1.4		
	L-level	Vol	V _{IN} = V _{IH} or V _{IL}	$I_{OL} = 100 \ \mu A$	1.8	_	0.2	
	L-IEVEI	VOL	VIN = VIH OI VIL	$I_{OL} = 4 \text{ mA}$	1.8	_	0.3	
Input leakage curre	nt	I _{IN}	$V_{IN} = 0$ to 3.6 V		1.8		±5.0	μA
2 state output OEE	atata aurrant	1.0-7	$V_{IN} = V_{IH} \text{ or } V_{IL}$		4.0		±10.0	
3-state output OFF state current		IOZ	V _{OUT} = 0 to 3.6 V		1.8	_	±10.0	μA
Power-off leakage of	current	I _{OFF}	V_{IN} , $V_{OUT} = 0$ to 3.6 V		0		10.0	μA
	Quiescent supply current		$V_{IN} = V_{CC} \text{ or GND}$		1.8		20.0	μA
Quiescent supply c			$V_{CC} \leq (V_{IN}, V_{OUT}) \leq 3.6 \ V$		1.8		±20.0	μΑ

AC Characteristics (Ta = -40 to 85°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$, $R_L = 500 \Omega$) (Note 1)

Characteristics	Symbol	Test Condition		Min	Max	Unit
	-		V _{CC} (V)			
	+		1.8	1.5	9.8	
Propagation delay time	t _{pLH}	Figure 1, Figure 2	2.5 ± 0.2	0.8	5.6	ns
	^t pHL		$\textbf{3.3}\pm\textbf{0.3}$	0.6	4.4	
	t		1.8	1.5	9.8	
3-state output enable time	t _{pZL} t _{pZH}	Figure 1, Figure 3	2.5 ± 0.2	0.8	6.5	ns
			$\textbf{3.3}\pm\textbf{0.3}$	0.6	5.0	
			1.8	1.5	7.7	
3-state output disable time	t _{pLZ} t _{pHZ}	Figure 1, Figure 3	2.5 ± 0.2	0.8	4.3	ns
			3.3 ± 0.3	0.6	3.9	
Output to output skew	t _{osLH} t _{osHL}		1.8		0.5	
		(Note 2)	2.5 ± 0.2		0.5	ns
			$\textbf{3.3}\pm\textbf{0.3}$	_	0.5	

Note 1: For $C_L = 50 \text{ pF}$, add approximately 300 ps to the AC maximum specification.

Note 2: Parameter guaranteed by design.

 $(t_{\text{OSLH}} = |t_{\text{pLHm}} - t_{\text{pLHn}}|, t_{\text{OSHL}} = |t_{\text{pHLm}} - t_{\text{pHLn}}|)$

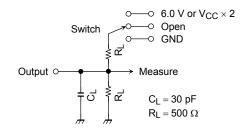
Dynamic Switching Characteristics (Ta = 25°C, input: $t_r = t_f = 2.0 \text{ ns}$, $C_L = 30 \text{ pF}$)

Characteristics	Symbol	Test Condition		V 00	Тур.	Unit
				$V_{CC}(V)$		
		$V_{IH}=1.8~V,~V_{IL}=0~V$	(Note)	1.8	0.15	
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	0.35	
		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	-0.15	
Quiet output minimum dynamic V_{OL}	VOLV	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	-0.25	V
		$V_{IH} = 3.3 V, V_{IL} = 0 V$	(Note)	3.3	-0.35	
		$V_{IH} = 1.8 V, V_{IL} = 0 V$	(Note)	1.8	1.55	
Quiet output minimum dynamic V_{OH}	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	2.05	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	2.65	

Note: Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition		Тур.	Unit	
Characteristics	Symbol			V _{CC} (V)	тур.	Unit
Input capacitance	C _{IN}	—		1.8, 2.5, 3.3	6	pF
Output capacitance	CO	—		1.8, 2.5, 3.3	7	pF
Power dissipation capacitance	C _{PD}	f _{IN} = 10 MHz	(Note)	1.8, 2.5, 3.3	20	pF


Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 \text{ (per bit)}$

TOSHIBA

AC Test Circuit

Parameter	Switch		
t _{pLH} , t _{pHL}	Open		
t _{pLZ} , t _{pZL}			
t _{pHZ} , t _{pZH}	GND		

Figure 1

AC Waveform

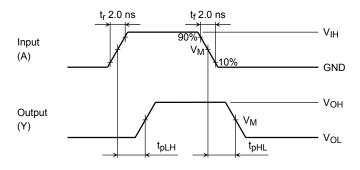


Figure 2 t_{pLH}, t_{pHL}

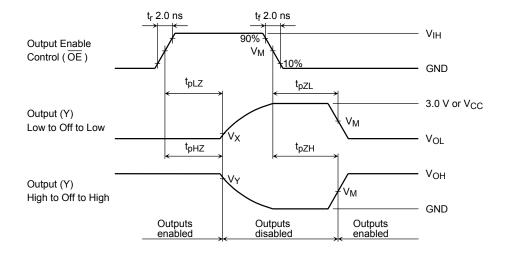
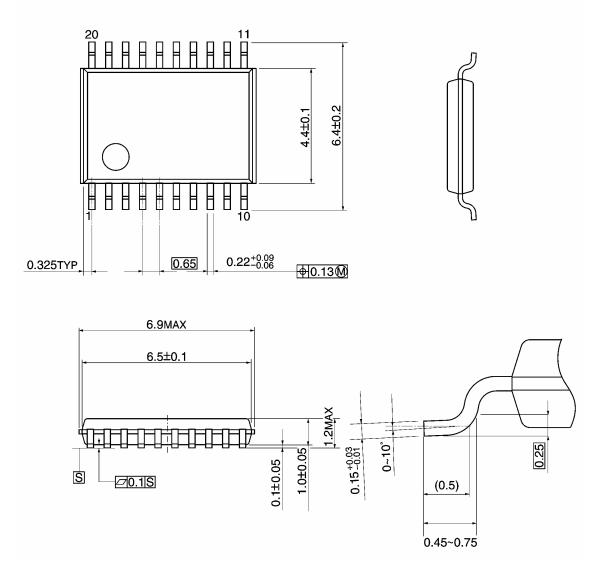


Figure 3 t_{pLZ}, t_{pHZ}, t_{pZL}, t_{pZH}

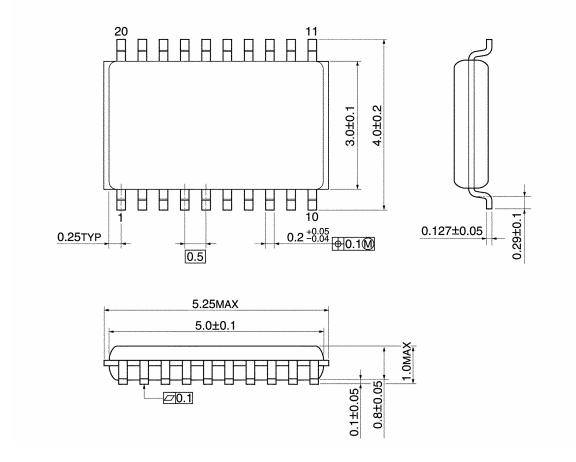

Symbol		V _{CC}				
Gymbol	$3.3\pm0.3~V$	$2.5\pm0.2\;V$	1.8 V			
VIH	2.7 V	V _{CC}	V _{CC}			
VM	1.5 V	V _{CC} /2	V _{CC} /2			
VX	V_{OL} + 0.3 V	V _{OL} + 0.15 V	V _{OL} + 0.15 V			
VY	V _{OH} – 0.3 V	V _{OH} – 0.15 V	V _{OH} – 0.15 V			

TOSHIBA

Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm

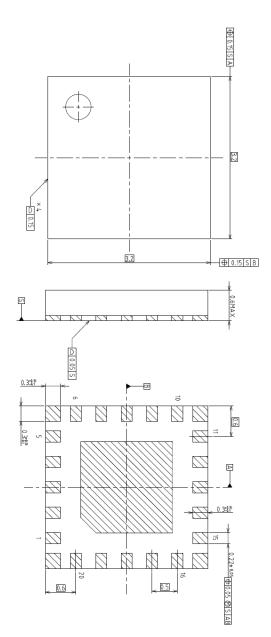

Weight: 0.08 g (typ.)

TOSHIBA

Package Dimensions

VSSOP20-P-0030-0.50

Unit: mm



Weight: 0.03 g (typ.)

Package Dimensions

VQON20-P-0404-0.50

Unit: mm

Weight: 0.0145 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.

Downloaded from Datasheet.su