
TLV2241, TLV2242, TLV2244 FAMILY OF 1-µA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

- Micropower Operation . . . 1 µA/Channel
- **Rail-to-Rail Input/Output**
- Gain Bandwidth Product ... 5.5 kHz
- Supply Voltage Range ... 2.5 V to 12 V
- **Specified Temperature Range** $- T_A = 0^{\circ}C$ to $70^{\circ}C \dots$ Commercial Grade $- T_A = -40^{\circ}C$ to $125^{\circ}C \dots$ Industrial Grade
- **Ultrasmall Packaging** - 5-Pin SOT-23 (TLV2241) - 8-Pin MSOP (TLV2242)
- Universal OpAmp EVM

description

The TLV224x family of single-supply operational amplifiers offers very low supply current of only 1 µA per channel.

The low supply current is coupled with extremely low input bias currents enabling them to be used with mega- Ω resistors making them ideal for portable, long active life, applications. DC accuracy is ensured with a low typical offset voltage as low as 600 µV, CMRR of 100 dB, and minimum open loop gain of 100 V/mV at 2.7 V.

The maximum recommended supply voltage is as high as 12 V and ensured operation down to 2.5 V, with electrical characteristics specified at 2.7 V, 5 V and 12 V. The 2.5-V operation makes it compatible with Li-Ion battery-powered systems and many micropower microcontrollers available today including TI's MSP430.

DEVICE	NO. OF Ch	PACKAGE TYPES					UNIVERSAL
DEVICE	NO. OF CI	PDIP	SOIC	SOT-23	TSSOP	MSOP	EVM
TLV2241	1	8	8	5	—	—	Refer to the EVM
TLV2242	2	8	8	—	—	8	Selection Guide
TLV2244	4	14	14	—	14	—	(Lit# SLOU060)

EAMILY DACKAGE TABLE

DEVICE	V _{DD} (V)	V _{IO} (mV)	BW (MHz)	SLEW RATE (V/μs)	I _{DD} (PER CHANNEL) (μΑ)	RAIL-TO-RAIL	
TLV240x [‡]	2.5–16	0.390	0.005	0.002	0.880	I/O	
TLV224x	2.5–12	0.600	0.005	0.002	1	I/O	
TLV2211	2.7–10	0.450	0.065	0.025	13	0	
TLV245x	2.7–6	0.020	0.22	0.110	23	I/O	
TLV225x	2.7–8	0.200	0.2	0.12	35	0	

SELECTION OF SINGLE SUPPLY OPERATIONAL AMPLIFIER PRODUCTS[†]

[†] All specifications are typical values measured at 5 V.

[‡] This device also offers 18-V reverse battery protection and 5-V over-the-rail operation on the inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters

Copyright © 2000, Texas Instruments Incorporated

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

TLV2241 AVAILABLE OPTIONS

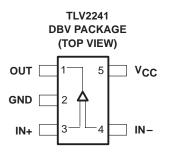
-	-						
			PACKAGED DEVICES				
TA	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	SOT-23 [‡] (DBV)	I SYMBOLS			
0°C to 70°C	3000 μV	TLV2241CD	—	—	—		
-40°C to 125°C	3000 μν	TLV2241ID	TLV2241IDBV	VBEI	TLV2241IP		

[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2241CDR).

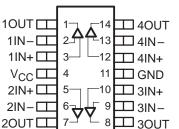
[‡]This package is available in a 250 piece mini-reel. To order this package, add a T suffix to the part number (e.g., TLV2241DBVT). This package is also available in a 3000 piece reel, add a R suffix to the part number (e.g., TLV2241DBVR).

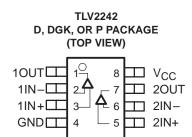
TLV2242 AVAILABLE OPTIONS

	PACKAGED DEVICES				
TA	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	MSOP [†] (DGK) SYMBOLS PL		PLASTIC DIP (P)
0°C to 70°C	3000 μV	TLV2242CD	—	—	—
-40°C to 125°C	3000 μν	TLV2242ID	TLV2242IDGK	xxTIALE	TLV2242IP


[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2242CDR).

TLV2244 AVAILABLE OPTIONS


	N	PA	CKAGED DEVICES	
TA	VIOMAX AT 25°C SMALL OUTLINE [†] (D)		PLASTIC DIP (N)	TSSOP (PW)
0°C to 70°C	3000 μV	TLV2244CD	—	—
-40°C to 125°C	3000 μν	TLV2244ID	TLV2244IN	TLV2244IPW


[†] This package is available taped and reeled. To order this packaging option, add an R suffix to the part number (e.g., TLV2244CDR).

TLV224x PACKAGE PINOUTS TLV2241

	or P Pa (Top V		GE	
NC	$\begin{array}{c}1^{\circ}\\2\\3\\4\end{array}$	8 7 6 5		NC V _{CC} OUT NC
NC – No ii	nternal	conn	ectior	١
D, N, O (TLV22 R PW F TOP VI	PACK	AGE	
	ᠴ᠋ᡘ	-14	□4	OUT

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC} (see Note 1) Differential input voltage, V _{ID}	$\dots \dots \dots \pm V_{CC}$
Input current, I _I (any input) Output current, I _O	
Continuous total power dissipation	
Operating free-air temperature range, T _A : C suffix	
I suffix	40°C to 125°C
Maximum junction temperature, T ₁	150°C
Storage temperature range, T _{stg}	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values, except differential voltages, are with respect to GND

	2			
PACKAGE	⊖JC (°C/W)	⊖JA (°C/W)	T _A ≤ 25°C POWER RATING	T _A = 125°C POWER RATING
D (8)	38.3	176	710 mW	142 mW
D (14)	26.9	122.6	1022 mW	204.4 mW
DBV (5)	55	324.1	385 mW	77.1 mW
DGK (8)	54.2	259.9	481 mW	96.2 mW
N (14)	32	78	1600 mW	320.5 mW
P (8)	41	104	1200 mW	240.4 mW
PW (14)	29.3	173.6	720 mW	144 mW

DISSIPATION RATING TABLE

recommended operating conditions

		MIN	MAX	UNIT
	Single supply	2.5	12	V
Supply voltage, V _{CC}	Split supply	±1.25	±6	v
Common-mode input voltage range, VICR	Common-mode input voltage range, V _{ICR}			
Operating free air temperature T	C-suffix	0	70	°C
Operating free-air temperature, T _A	I-suffix	-40	125	C

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

electrical characteristics at recommended operating conditions, V_{CC} = 2.7, 5 V, and 12 V (unless otherwise noted)[‡]

dc performance

	PARAMETER	TEST CONDITIO	NS	T _A †	MIN	TYP	MAX	UNIT
Vie	Input offect veltage			25°C		600	3000	
VIO	Input offset voltage	$V_{O} = V_{CC}/2 V,$ $V_{IC} = V_{CC}/2 V, R_{S} = 50 \Omega$		Full range			4500	μV
ανιο	Offset voltage drift	$V_{1C} = V_{CC} = V_{1C} = 00.22$		25°C		3		μV/°C
				25°C	55	100		
			V _{CC} = 2.7 V	Full range	50			
CMDD	Common mode rejection ratio		V _{CC} = 5 V	25°C	60	100		dB
CIVIRR	CMRR Common-mode rejection ratio			Full range	53			uБ
			V _{CC} = 12 V	25°C	60	100		
				Full range	55			
			D: 500 kO	25°C	100	400		
		$V_{CC} = 2.7 \text{ V}, V_{O(pp)} = 1 \text{ V},$	KC = 200 K75	Full range	30			
A	Large-signal differential voltage		D. 500 kg	25°C	250	1000		\//m)/
AVD	AVD amplification	$V_{CC} = 5 V, V_{O(pp)} = 3 V,$	K ^L = 200 K22	Full range	100			V/mV
			$P_{1} = 500 k_{0}$	25°C	700	1500		
		$V_{CC} = 12 \text{ V}, V_{O(pp)} = 6 \text{ V},$	LT = 200 K75	Full range	120			

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

input characteristics

PARAMETER TEST CONDIT		TEST CONDITIO	NS	T _A †	MIN	TYP	MAX	UNIT
				25°C		25	250	
lio	Input offset current	I —	TLV224xC	Full range			300	pА
			TLV224xI	Fuirrange			400	
				25°C		100	500	
I _{IB}	Input bias current		TLV224xC				550	pА
			TLV224xI	Full range			1000	
ri(d)	Differential input resistance			25°C		300		MΩ
C _{i(c)}	Common-mode input capacitance	f = 100 kHz		25°C		3		pF

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

[‡] Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V.

TLV2241, TLV2242, TLV2244 FAMILY OF 1- μ A/Ch RAIL-TO-RAIL INPUT/OUTPUT **OPERATIONAL AMPLIFIERS** SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

electrical characteristics at recommended operating conditions, V_{CC} = 2.7, 5 V, and 12 V (unless otherwise noted)[‡] (continued)

output characteristics

	PARAMETER	TEST CON	NDITIONS	т _А †	MIN	TYP	MAX	UNIT
			V _{CC} = 2.7 V	25°C	2.65	2.68		
		Full	Full range	2.63				
		$V_{IC} = V_{CC}/2,$	V _{CC} = 5 V	25°C	4.95	4.98		
		$V_{IC} = V_{CC}/2,$ $I_{OH} = -2 \mu A$	vCC = 2 v	Full range	4.93			
			Vec 12.V	25°C	11.95	11.98		
1	VOH High-level output voltage		V _{CC} = 12 V	Full range	11.93			V
⊻он			No. 07.1	25°C	2.62	2.65		
			V _{CC} = 2.7 V	Full range	2.6			
		$V_{IC} = V_{CC}/2, V_{CC} = 5 V$		25°C	4.92	4.95		
			vCC = 2 v	Full range	4.9			
			Vec 12.V	25°C	11.92	11.95		
			V _{CC} = 12 V	Full range	11.9			
			2	25°C		90	150	
V	Manual second sector of coldering	$V_{IC} = V_{CC}/2$, Ic	<u> </u>	Full range			180	
VOL	Low-level output voltage		- <u>-</u>	25°C		180	230	mV
		v C = vCC/2, ic	$IC = V_{CC}/2$, $I_{OL} = 50 \mu A$				260	
1 ₀	Output current	$V_{O} = 0.5 V$ from	rail	25°C		±200		μA

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

power supply

	PARAMETER	TEST CO	T _A †	MIN	TYP	MAX	UNIT	
						980	1200	
	Supply surrent (per shapped)	$\lambda = \lambda = a/2$	$V_{CC} = 2.7 V \text{ or } 5 V$	Full range			1500	54
ICC	Supply current (per channel)	$V_{O} = V_{CC}/2$ $V_{CC} = 12 V$ Full range		1000	1250	nA		
			$v_{CC} = 12 v$	Full range			1550	
		$V_{CC} = 2.7 \text{ to } 5 \text{ V}.$		25°C	70	100		dB
	Power supply rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	$V_{CC} = 2.7 \text{ to } 5 \text{ V},$ $V_{IC} = V_{CC}/2 \text{ V},$	TLV224xC		65			uБ
PSRR		No load,	TLV224xI	Full range	60			dB
		$V_{CC} = 5$ to 12 V, $V_{IC} = V_{CC}/2$ V, No load		25°C	70	100		dB
				Full range	70			uВ

[†] Full range is 0°C to 70°C for the C suffix and -40°C to 125°C for the I suffix. If not specified, full range is -40°C to 125°C.

[‡] Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V.

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

electrical characteristics at recommended operating conditions, V_{CC} = 2.7, 5 V, and 12 V (unless otherwise noted)[‡] (continued)

dynamic performance

	PARAMETER	TEST CONDITION	TEST CONDITIONS				UNIT
UGBW	Unity gain bandwidth	R _L = 500 kΩ,	C _L = 100 pF	25°C	5.5		kHz
SR	Slew rate at unity gain	$V_{O(pp)} = 0.8 \text{ V}, \qquad \text{R}_{L} = 500 \text{ k}\Omega,$	C _L = 100 pF	25°C	2		V/ms
φM	Phase margin			25°C	60		
	Gain margin	$R_L = 500 k\Omega$, $C_L = 100 pF$		25-0	15		dB
t _S Settling	Sottling time		0.1%	25°C	1.84		
	Settling time	$V_{CC} = 12 V,$	0.1%	25.0	6.1		ms
			0.01%		32		

noise/distortion performance

	PARAMETER	TEST CONDITIONS	Τ _Α	MIN	TYP	MAX	UNIT	
v _n	Equivalent input noise voltage	f = 10 Hz			800			
		f = 100 Hz	25°C		500		nV/√Hz	
In	Equivalent input noise current	f = 100 Hz			8		fA/√Hz	

[‡] Specifications at 5 V are ensured by design and device testing at 2.7 V and 12 V.

TLV2241, TLV2242, TLV2244 FAMILY OF 1- μ A/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C – JULY 2000 REVISED - NOVEMBER 2000

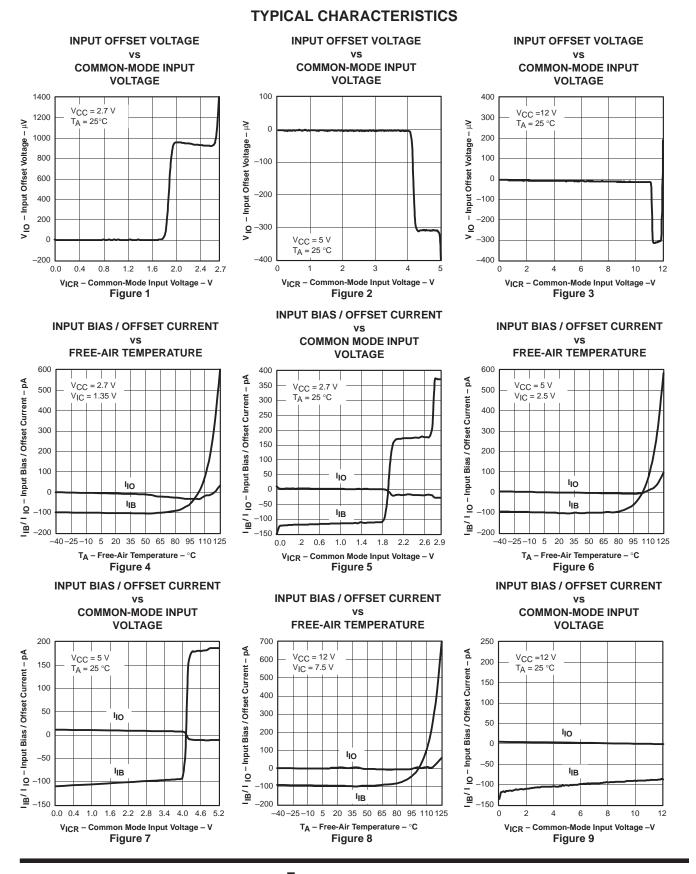
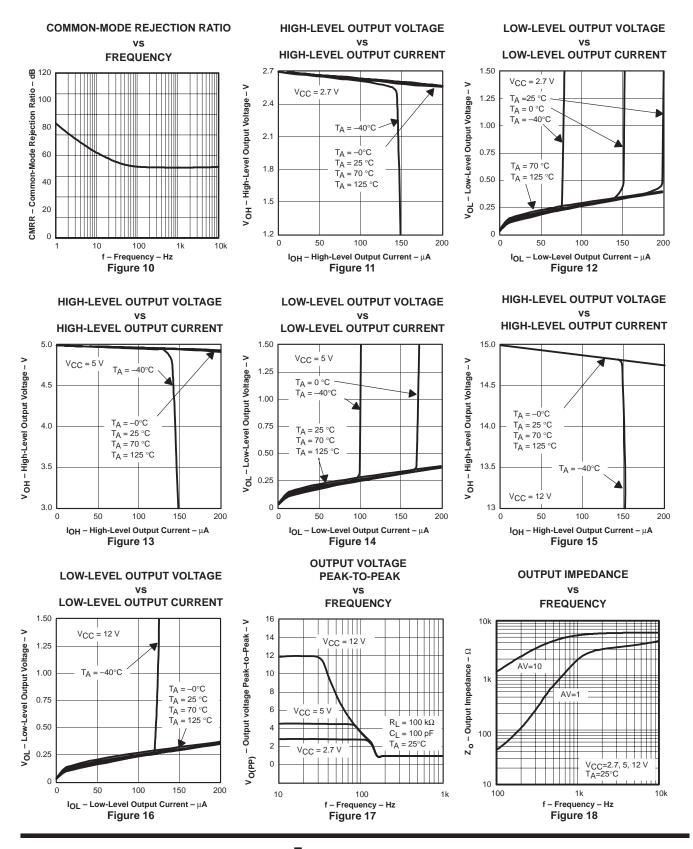

TYPICAL CHARACTERISTICS

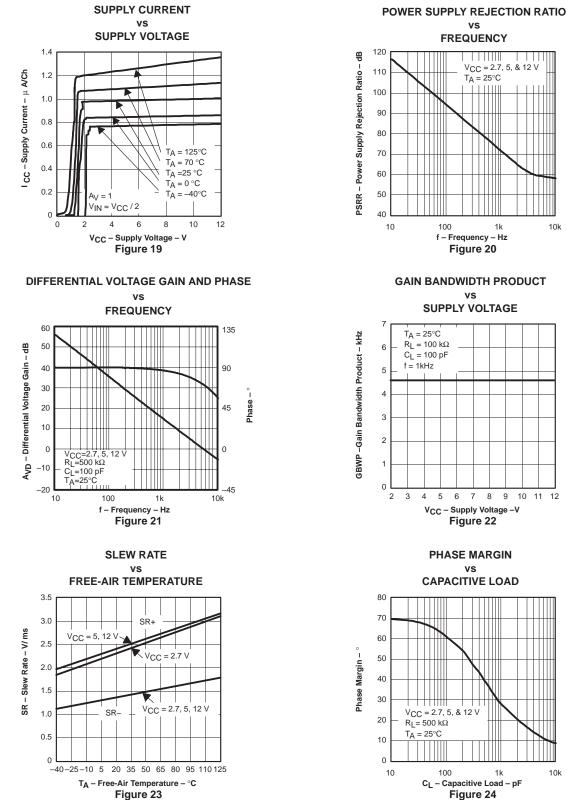
Table of Graphs

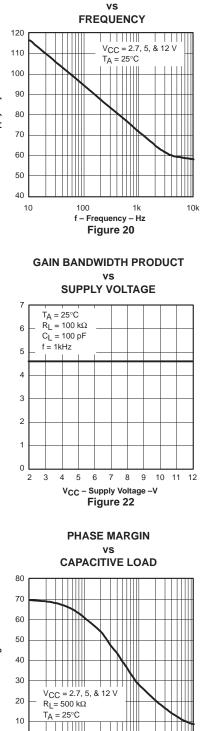
			FIGURE
VIO	Input offset voltage	vs Common-mode input voltage	1, 2, 3
lin.	Input bias current	vs Free-air temperature	4, 6, 8
IВ	input bias current	vs Common-mode input voltage	5, 7, 9
ha	Input offset current	vs Free-air temperature	4, 6, 8
10	input onset current	vs Common-mode input voltage	5, 7, 9
CMRR	Common-mode rejection ratio	vs Frequency	10
VOH	High-level output voltage	vs High-level output current	11, 13, 15
V _{OL}	Low-level output voltage	vs Low-level output current	12, 14, 16
V _{O(PP)}	Output voltage peak-to-peak	vs Frequency	17
Z _O	Output impedance	vs Frequency	18
ICC	Supply current	vs Supply voltage	19
PSRR	Power supply rejection ratio	vs Frequency	20
AVD	Differential voltage gain	vs Frequency	21
	Phase	vs Frequency	21
	Gain-bandwidth product	vs Supply voltage	22
SR	Slew rate	vs Free-air temperature	23
φm	Phase margin	vs Capacitive load	24
	Gain margin	vs Capacitive load	25
	Voltage noise over a 10 Second Period		26
	Large-signal voltage follower		27, 28, 29
	Small-signal voltage follower		30
	Large-signal inverting pulse response		31, 32, 33
	Small-signal inverting pulse response		34
	Crosstalk	vs Frequency	35


SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

STRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000


TYPICAL CHARACTERISTICS



POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2241, TLV2242, TLV2244 FAMILY OF 1-µA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

TYPICAL CHARACTERISTICS

10k

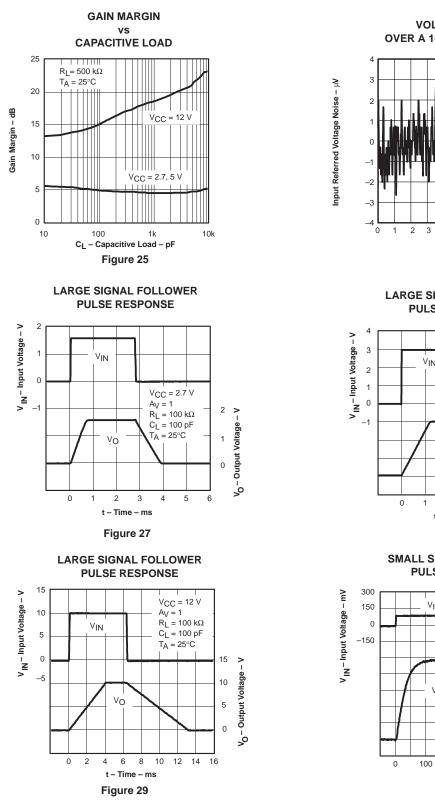
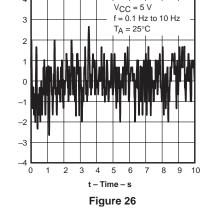
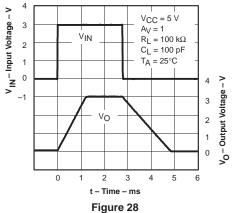
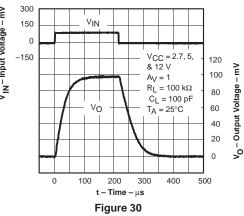

1k

Figure 24

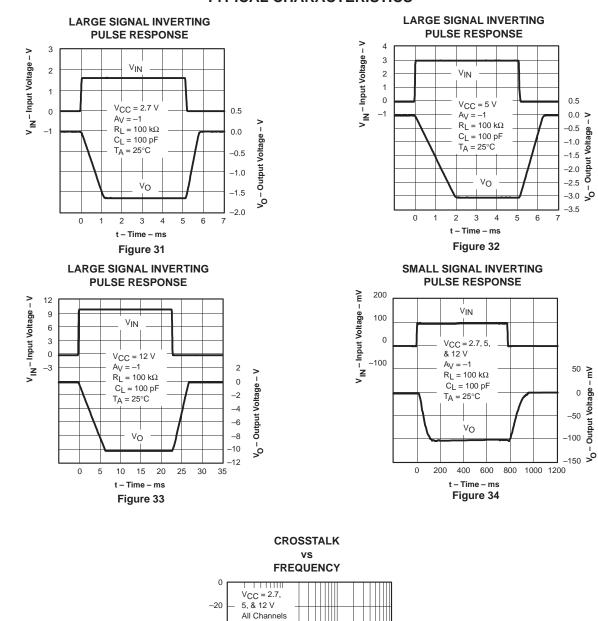

STRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

TLV2241, TLV2242, TLV2244 FAMILY OF 1-μA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C – JULY 2000 REVISED - NOVEMBER 2000


TYPICAL CHARACTERISTICS


VOLTAGE NOISE OVER A 10 SECOND PERIOD

LARGE SIGNAL FOLLOWER PULSE RESPONSE



SMALL SIGNAL FOLLOWER PULSE RESPONSE

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

 $R_L = 100 \ k\Omega$

C_L = 100 pF

VIN = 1 VPP

V_{CC} = 2.7, 5 V

100

 $V_{CC} = 12V$

1k

10k

-40

-60 -80

-100

-120 -140 10

Crosstalk – dB

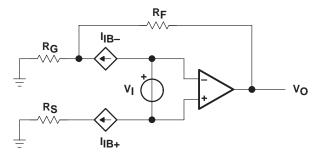
50 ž

0

-50

Output Voltage

TYPICAL CHARACTERISTICS


ISTRUMENTS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265

f - Frequency -Hz Figure 35

APPLICATION INFORMATION

offset voltage

The output offset voltage, (V_{OO}) is the sum of the input offset voltage (V_{IO}) and both input bias currents (I_{IB}) times the corresponding gains. The following schematic and formula can be used to calculate the output offset voltage:

$$V_{OO} = V_{IO} \left(1 + \left(\frac{R_F}{R_G} \right) \right) \pm I_{IB+} R_S \left(1 + \left(\frac{R_F}{R_G} \right) \right) \pm I_{IB-} R_F$$

general configurations

When receiving low-level signals, limiting the bandwidth of the incoming signals into the system is often required. The simplest way to accomplish this is to place an RC filter at the noninverting terminal of the amplifier (see Figure 37).

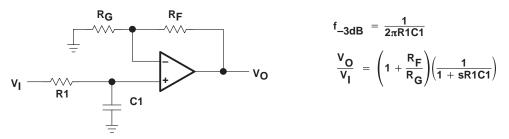


Figure 37. Single-Pole Low-Pass Filter

If even more attenuation is needed, a multiple pole filter is required. The Sallen-Key filter can be used for this task. For best results, the amplifier should have a bandwidth that is 8 to 10 times the filter frequency bandwidth. Failure to do this can result in phase shift of the amplifier.

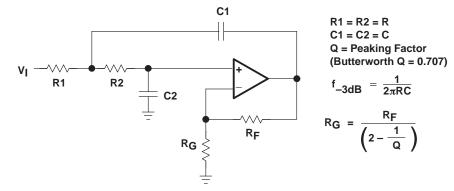


Figure 38. 2-Pole Low-Pass Sallen-Key Filter

TLV2241, TLV2242, TLV2244 FAMILY OF 1-μA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C – JULY 2000 REVISED - NOVEMBER 2000

APPLICATION INFORMATION

circuit layout considerations

To achieve the levels of high performance of the TLV224x, follow proper printed-circuit board design techniques. A general set of guidelines is given in the following.

- Ground planes—It is highly recommended that a ground plane be used on the board to provide all components with a low inductive ground connection. However, in the areas of the amplifier inputs and output, the ground plane can be removed to minimize the stray capacitance.
- Proper power supply decoupling—Use a 6.8-μF tantalum capacitor in parallel with a 0.1-μF ceramic capacitor on each supply terminal. It may be possible to share the tantalum among several amplifiers depending on the application, but a 0.1-μF ceramic capacitor should always be used on the supply terminal of every amplifier. In addition, the 0.1-μF capacitor should be placed as close as possible to the supply terminal. As this distance increases, the inductance in the connecting trace makes the capacitor less effective. The designer should strive for distances of less than 0.1 inches between the device power terminals and the ceramic capacitors.
- Sockets—Sockets can be used but are not recommended. The additional lead inductance in the socket pins will often lead to stability problems. Surface-mount packages soldered directly to the printed-circuit board is the best implementation.
- Short trace runs/compact part placements—Optimum high performance is achieved when stray series inductance has been minimized. To realize this, the circuit layout should be made as compact as possible, thereby minimizing the length of all trace runs. Particular attention should be paid to the inverting input of the amplifier. Its length should be kept as short as possible. This will help to minimize stray capacitance at the input of the amplifier.
- Surface-mount passive components—Using surface-mount passive components is recommended for high performance amplifier circuits for several reasons. First, because of the extremely low lead inductance of surface-mount components, the problem with stray series inductance is greatly reduced. Second, the small size of surface-mount components naturally leads to a more compact layout thereby minimizing both stray inductance and capacitance. If leaded components are used, it is recommended that the lead lengths be kept as short as possible.

14

APPLICATION INFORMATION

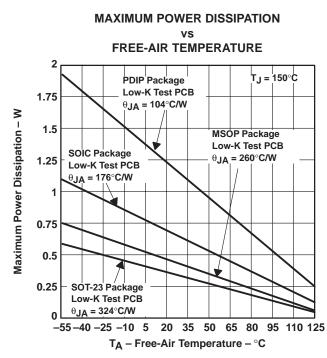
general power dissipation considerations

For a given θ_{JA} , the maximum power dissipation is shown in Figure 39 and is calculated by the following formula:

$$\mathsf{P}_{\mathsf{D}} = \left(\frac{\mathsf{T}_{\mathsf{M}\mathsf{A}\mathsf{X}}^{-\mathsf{T}}\mathsf{A}}{\theta_{\mathsf{J}\mathsf{A}}}\right)$$

Where:

 P_D = Maximum power dissipation of THS224x IC (watts)


 T_{MAX} = Absolute maximum junction temperature (150°C)

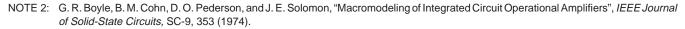
 T_A = Free-ambient air temperature (°C)

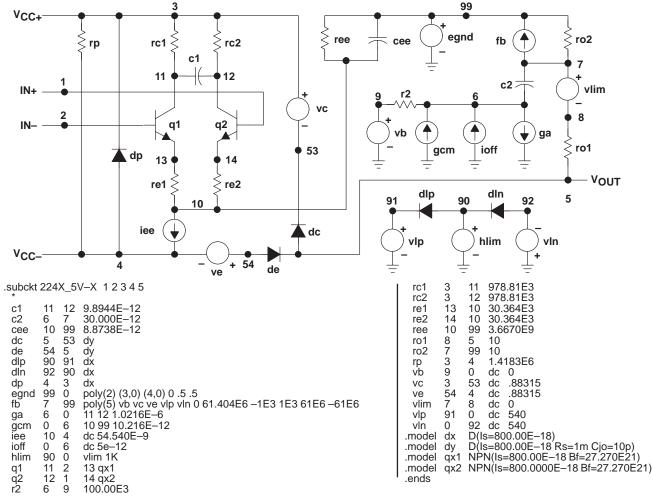
 $\theta_{JA} = \theta_{JC} + \theta_{CA}$

 θ_{JC} = Thermal coefficient from junction to case

 θ_{CA} = Thermal coefficient from case to ambient air (°C/W)

TLV2241, TLV2242, TLV2244 FAMILY OF 1-µA/Ch RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS SLOS329C - JULY 2000 REVISED - NOVEMBER 2000


APPLICATION INFORMATION

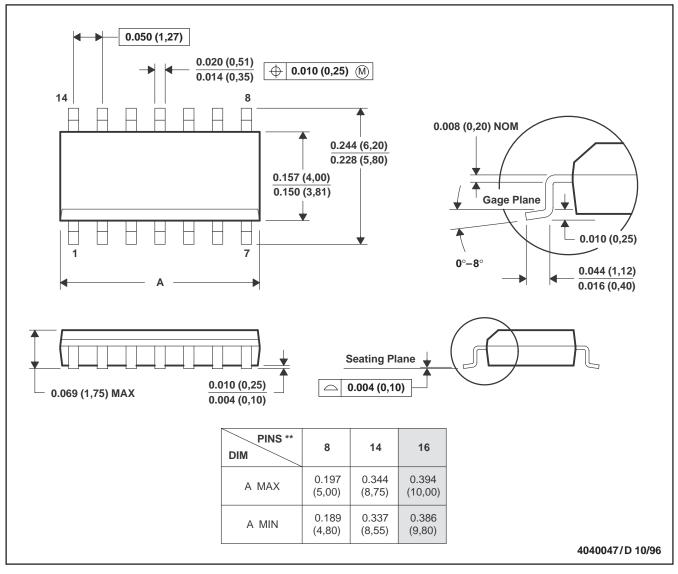

macromodel information

Macromodel information provided was derived using Microsim Parts™ Release 8, the model generation software used with Microsim PSpice™. The Boyle macromodel (see Note 2) and subcircuit in Figure 40 are generated using the TLV224x typical electrical and operating characteristics at T_A = 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

PSpice and Parts are trademarks of MicroSim Corporation.



SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

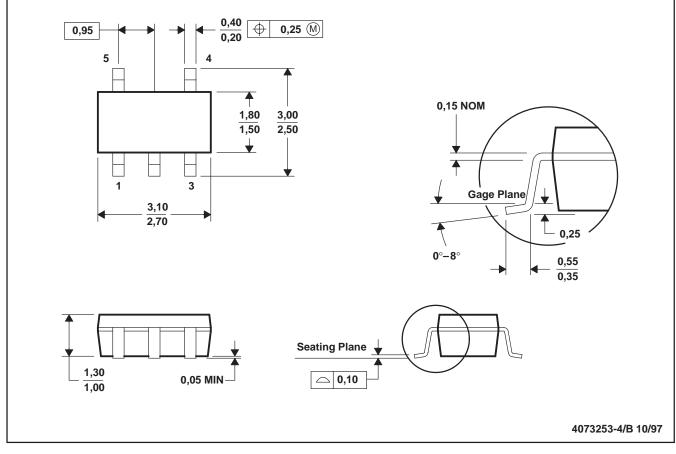
MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) **14 PIN SHOWN**

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).



SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

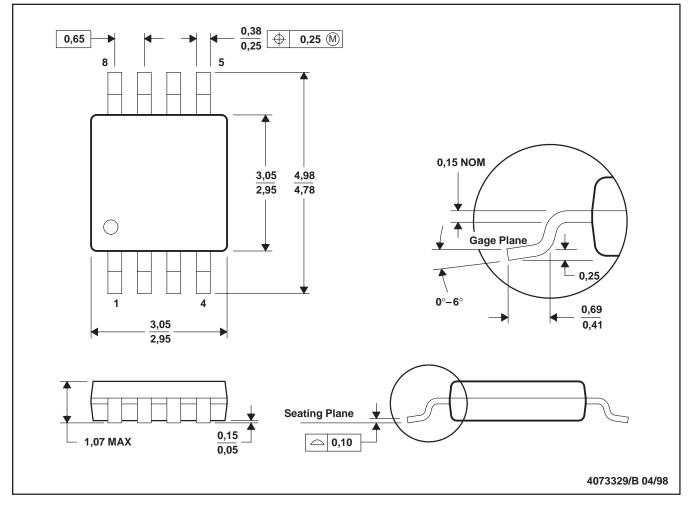
MECHANICAL INFORMATION

DBV (R-PDSO-G5)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions include mold flash or protrusion.


18

SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

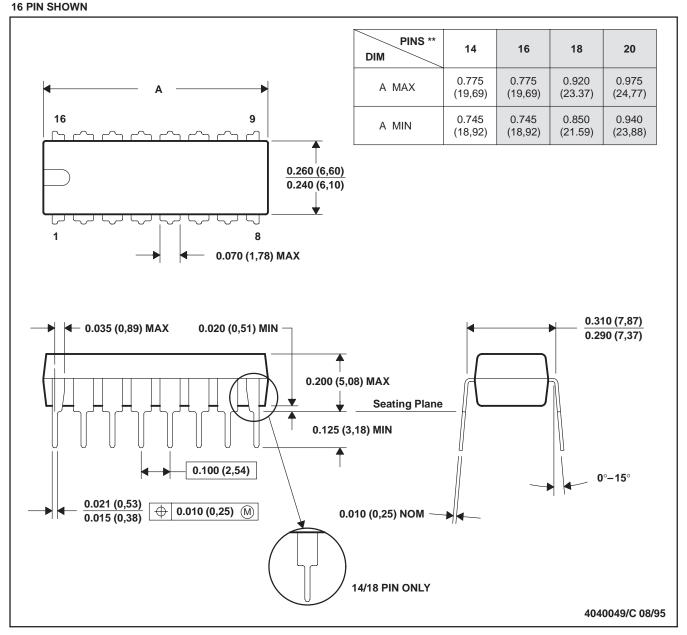
MECHANICAL INFORMATION

DGK (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. Falls within JEDEC MO-187

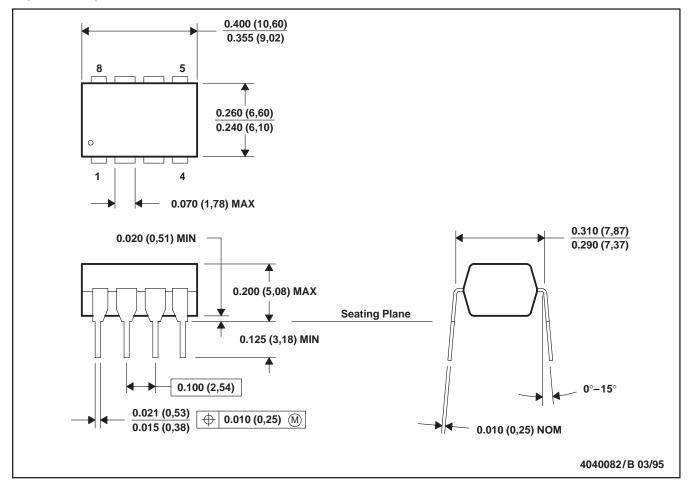


SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

MECHANICAL INFORMATION

PLASTIC DUAL-IN-LINE PACKAGE

N (R-PDIP-T**)


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

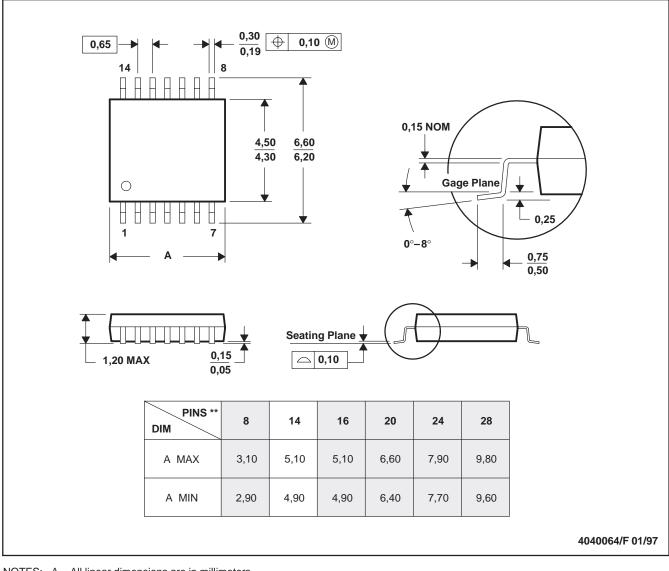
SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

MECHANICAL INFORMATION

PLASTIC DUAL-IN-LINE PACKAGE

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MS-001

P (R-PDIP-T8)


SLOS329C - JULY 2000 REVISED - NOVEMBER 2000

MECHANICAL INFORMATION

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

8-Dec-2008

PACKAGING INFORMATION

TEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV2241CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDBVR	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDBVRG4	ACTIVE	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDBVT	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDBVTG4	ACTIVE	SOT-23	DBV	5	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2241IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TLV2241IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TLV2242CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDGK	ACTIVE	MSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDGKG4	ACTIVE	MSOP	DGK	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDGKR	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDGKRG4	ACTIVE	MSOP	DGK	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2242IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type

8-Dec-2008

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TLV2242IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TLV2244CD	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244CDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244ID	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IDG4	ACTIVE	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IDR	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IDRG4	ACTIVE	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IN	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TLV2244INE4	ACTIVE	PDIP	Ν	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
TLV2244IPW	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IPWG4	ACTIVE	TSSOP	PW	14	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IPWR	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLV2244IPWRG4	ACTIVE	TSSOP	PW	14	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

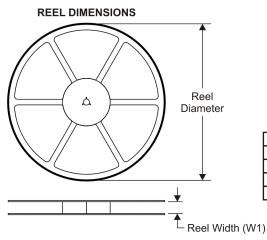
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

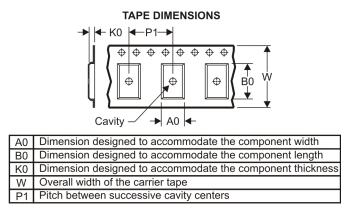
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

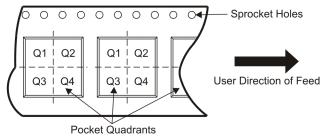
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

PACKAGE OPTION ADDENDUM


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

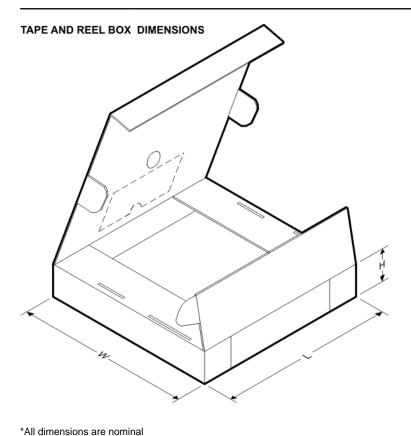

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV2241IDBVR	SOT-23	DBV	5	3000	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TLV2241IDBVT	SOT-23	DBV	5	250	180.0	9.0	3.15	3.2	1.4	4.0	8.0	Q3
TLV2241IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2242CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2242IDGKR	MSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV2242IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLV2244IDR	SOIC	D	14	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
TLV2244IPWR	TSSOP	PW	14	2000	330.0	12.4	7.0	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

17-Apr-2009

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLV2241IDBVR	SOT-23	DBV	5	3000	182.0	182.0	20.0
TLV2241IDBVT	SOT-23	DBV	5	250	182.0	182.0	20.0
TLV2241IDR	SOIC	D	8	2500	346.0	346.0	29.0
TLV2242CDR	SOIC	D	8	2500	346.0	346.0	29.0
TLV2242IDGKR	MSOP	DGK	8	2500	358.0	335.0	35.0
TLV2242IDR	SOIC	D	8	2500	346.0	346.0	29.0
TLV2244IDR	SOIC	D	14	2500	346.0	346.0	33.0
TLV2244IPWR	TSSOP	PW	14	2000	346.0	346.0	29.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Broadband	www.ti.com/broadband
DSP	dsp.ti.com	Digital Control	www.ti.com/digitalcontrol
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Military	www.ti.com/military
Logic	logic.ti.com	Optical Networking	www.ti.com/opticalnetwork
Power Mgmt	power.ti.com	Security	www.ti.com/security
Microcontrollers	microcontroller.ti.com	Telephony	www.ti.com/telephony
RFID	www.ti-rfid.com	Video & Imaging	www.ti.com/video
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated