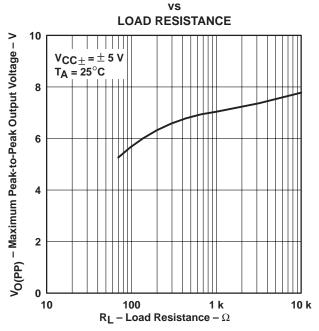
SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

- Excellent Output Drive Capability $V_O = \pm 2.5 V$ Min at $R_L = 100 \Omega$, $V_{CC\pm} = \pm 5 V$ $V_O = \pm 12.5 V$ Min at $R_L = 600 \Omega$, $V_{CC+} = \pm 15 V$
- Low Supply Current ... 280 μA Typ
- Decompensated for High Slew Rate and Gain-Bandwidth Product
 A_{VD} = 0.5 Min
 Slew Rate = 10 V/μs Typ
 Gain-Bandwidth Product = 6.5 MHz Typ


description

The TLE2161, TLE2161A, and TLE2161B are JFET-input, low-power, precision operational amplifiers manufactured using the Texas Instruments Excalibur process. Decompensated for stability with a minimum closed-loop gain of 5, these devices combine outstanding output drive capability with low power consumption, excellent dc precision, and high gain-bandwidth product.

In addition to maintaining the traditional JFET advantages of fast slew rates and low input bias and offset currents, the Excalibur process offers outstanding parametric stability over time and temperature. This results in a device that remains precise even with changes in temperature and over years of use.

- Wide Operating Supply Voltage Range V_{CC ±} = ± 3.5 V to ± 18 V
- High Open-Loop Gain . . . 280 V/mV Typ
- Low Offset Voltage . . . 500 μV Max
- Low Offset Voltage Drift With Time 0.04 μV/Month Typ
- Low Input Bias Current . . . 5 pA Typ

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

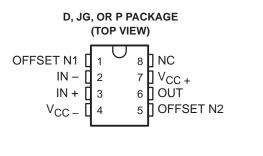
			PACK	AGE	
т _А	V _{IO} max AT 25°C	SMALL OUTLINE (D)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)
0°C to 70°C	500 μV 1.5 mV 3 mV				TLE2161BCP TLE2161ACP TLE2161CP
-40°C to 85°C	500 μV 1.5 mV 3 mV				TLE2161BIP TLE2161AIP TLE2161IP
−55°C to 125°C	500 μV 1.5 mV 3 mV			TLE2161BMJG TLE2161AMJG TLE2161MJG	TLE2161BMP TLE2161AMP TLE2161MP

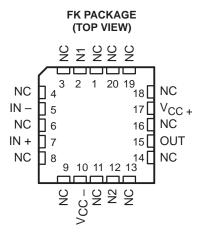
AVAILABLE OPTIONS

The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2161ACDR).

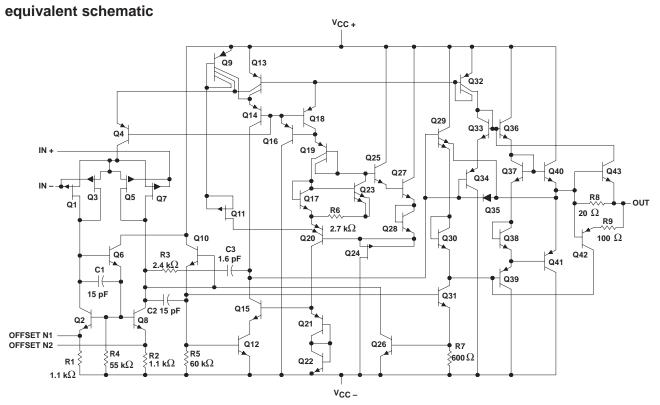
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.




SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

description (continued)


A variety of available options includes small-outline packages and chip-carrier versions for high-density system applications.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from - 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of – 55°C to 125°C.

NC - No internal connection

All component values are nominal.

SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC +} (see Note 1)	19 V
Supply voltage, V _{CC}	
Differential input voltage, VID (see Note 2)	
Input voltage range, V _I (any input)	
Input current, I _I (each input)	
Output current, I _O	
Total current into V _{CC +}	80 mA
Total current out of V_{CC}	
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	
Operating free-air temperature range, T _A : C suffix	
I suffix	– 40°C to 85°C
M suffix	– 55°C to 125°C
Storage temperature range, T _{stg}	– 65°C to 150°C
Case temperature for 60 seconds: FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P packa	ge 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60seconds: JG package	300°C

† Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC} +, and V_{CC} -.

2. Differential voltages are at IN+ with respect to IN-.

3. The output may be shorted to either supply. Temperature and /or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW

recommended operating conditions

		C SUF	FIX	I SUF	FIX	M SUF	FIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	
Supply voltage, V _{CC\pm}		±3.5	±18	±3.5	±18	+3.5	±18	V
Common-mode input voltage, VIC	$V_{CC \pm} = \pm 5 V$	-1.6	4	-1.6	4	-1.6	4	v
Common-mode input voltage, vIC	$V_{CC \pm} = \pm 15 V$	-11	13	-11	13	-11	13	v
Operating free-air temperature, TA		0	70	-40	85	-55	125	°C

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted)

	PARAMETE	ER	TEST CON	IDITIONS	т _А †	TLE2161 TL	C, TLE2 [,] E2161BC		UNIT
						MIN	TYP	MAX	
		TIFOACAC			25°C		0.8	3.1	
		TLE2161C			Full range			4	
\/	Innut offerst veltage		7		25°C		0.6	2.6	
VIO	Input offset voltage	TLE2161AC			Full range			3.5	mV
			7		25°C		0.5	1.9	
		TLE2161BC		$P_{\sigma} = 50.0$	Full range			2.4	
αγιο	Temperature coefficient of	of input offset voltage	$V_{IC} = 0,$	$R_S = 50 \Omega$	Full range		6		μV/°C
	Input offset voltage long-	term drift (see Note 4)			25°C		0.04		μV/mc
li o	Input offect ourrept		7		25°C		1		pА
10	Input offset current				Full range			0.8	nA
4	Input biog ourrest		7		25°C		3		pА
ΙB	Input bias current				Full range			2	nA
<u> </u>	Common mode input usk				25°C	-1.6 to 4	-2 to 6		V
VICR	Common-mode input vol	tage range			Full range	-1.6 to 4			V
					25°C	3.5	3.7		
.,			$R_L = 10 \text{ k}\Omega$		Full range	3.3			.,
VOM +	Maximum positive peak of	output voltage swing	D 400.0		25°C	2.5	3.1		V
			R _L = 100 Ω		Full range	2			
					25°C	-3.7	-3.9		
.,			$R_L = 10 \text{ k}\Omega$		Full range	-3.3			.,
VOM –	Maximum negative peak	output voltage swing			25°C	-2.5	-2.7		V
			R _L = 100 Ω		Full range	-2			
				D (0) 0	25°C	15	80		
			$V_{O} = \pm 2.8 V,$	$R_{L} = 10 k\Omega$	Full range	2			
				D (00.0	25°C	0.75	45		.,, .,
AVD	Large-signal differential v	voltage amplification	$V_{O} = 0$ to 2 V,	$R_L = 100 \Omega$	Full range	0.5			V/mV
			N 01 01	D (00.0	25°C	0.5	3		
			$V_0 = 0 \text{ to} - 2 \text{ V},$	$R_{L} = 100 \Omega$	Full range	0.25			
ri	Input resistance				25°C		1012		Ω
ci	Input capacitance				25°C		4		pF
z _o	Open-loop output impeda	ance	I ^O = 0		25°C		280		Ω
		rotio		De 50.0	25°C	65	82		dD
CMRR	Common-mode rejection	rauo	VIC=VICRmin,	$RS = 50 \Omega$	Full range	65			dB
	Ourselie under sie metersti		$V_{CC\pm} = \pm 5 V t$	o ±15 V.	25°C	75	93		, ID
^k SVR	Supply-voltage rejection	$(\nabla \Lambda CC^{\mp} / \nabla \Lambda O)$	$R_S = 50 \Omega$,	Full range	75			dB
ICC	Supply current				25°C Full range		280	325 350	μA
∆ICC	Supply-current change or temperature range	ver operating	$V_{O} = 0,$	No load	Full range		29	300	μA

[†]Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted)

	PARAMETER	те	ST CONDITION	IS	т _А †		1C, TLE2 .E2161B(UNIT
						MIN	TYP	MAX	
					25°C	7	10		
SR	Slew rate (see Figure 1)	$A_{VD} = 5,$	R _L = 10 kΩ,	C _L = 100 pF	Full range	5			V/µs
V	Equivalent input noise voltage	R _S = 20 Ω,	f = 10 Hz		25°C		59	100	
۷ _n	(see Figure 2)	R _S = 20 Ω,	f = 1 kHz		25 0		43	60	nV/√Hz
V _{n(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10) Hz		25°C		1.1		μV
I _n	Equivalent input noise current	f = 1 kHz			25°C		1		fA/√Hz
THD	Total harmonic distortion	$V_{O(PP)} = 2 V,$ $R_L = 10 k\Omega$	$A_{VD} = 5$,	f = 10 kHz,	25°C		0.025%		
	Gain-bandwidth product	f = 100 kHz,	$R_L = 10 \text{ k}\Omega$,	$C_L = 100 \text{ pF}$	25°C		5.8		MHz
	(see Figure 3)	f = 100 kHz,	$R_L = 100 \text{ k}\Omega,$	$C_L = 100 \text{ pF}$	25 C		4.3		IVITIZ
+	Settling time	ε = 0.1%			25°C		5		110
t _s	Setting time	ε = 0.01%			25 0		10		μs
B _{OM}	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \ k\Omega$		25°C		420		kHz
	Phase margin (see Figure 3)	$A_{VD} = 5,$	$R_L = 10 \text{ k}\Omega,$	C _L = 100 pF	25°C		70°		
Φm	Filase Indigin (see Figure 3)	$A_{VD} = 5$,	RL = 100 Ω,	$C_L = 100 \text{ pF}$	200		84°		

[†] Full range is 0°C to 70°C.

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	т _А †		IC, TLE21 E2161BC		UNIT
						MIN	TYP	MAX	
		TLE2161C			25°C		0.6	3	
		TLEZIOIC			Full range			3.9	
Vie	Input offset voltage	TLE2161AC			25°C		0.5	1.5	mV
VIO	input onset voltage	TLEZIOTAC			Full range			2.5	mv
		TLE2161BC]		25°C		0.3	0.5	
		TLEZIOIBC			Full range			1	
ανιο	Temperature coefficient of	f input offset voltage	$V_{IC} = 0,$	$R_S = 50 \Omega$	Full range		6		μV/°C
	Input offset voltage long-t (see Note 4)	erm drift			25°C		0.04		μV/mc
1	land affect summer		1		25°C		2		pА
IIO	Input offset current				Full range			1	nA
L	lanut hing aumont		1		25°C		4		pА
IВ	Input bias current				Full range			3	nA
V					25°C	-11 to 13	-12 to 16		V
VICR	Common-mode input volt	age range			Full range	-11 to 13			V
			D 401-0		25°C	13.2	13.7		
V			$R_L = 10 k\Omega$		Full range	13			
VOM +	Maximum positive peak o	utput voltage swing	D. 000.0		25°C	12.5	13.2		V
			RL = 600 Ω		Full range	12			
			R _I = 10 kΩ		25°C	-13.2	-13.7		
Var	Movimum pogotivo pook				Full range	-13			v
VOM –	Maximum negative peak	Sulput voltage swing	RL = 600 Ω		25°C	-12.5	-13		v
			KL = 000 32		Full range	-12			
			V _O = ±10 V,	$R_L = 10 \ k\Omega$	25°C	30	230		
			$v_{O} = \pm 10 v$,		Full range	20			
A) (D	Large-signal differential ve	oltage amplification	$V_{0} = 0$ to 8 V,	RL = 600 Ω	25°C	25	100		V/mV
AVD	Large-signar unterentiar w	onage amplification	VO = 0 10 0 V,	KL = 000 32	Full range	10			v/IIIv
			$V_{O} = 0 \text{ to} - 8 \text{ V},$	$R_1 = 600.0$	25°C	3	25		
			$v_0 = 0.0 - 0.0$,	KL = 000 32	Full range	1			
ri	Input resistance				25°C		10 ¹²		Ω
ci	Input capacitance				25°C		4		pF
z ₀	Open-loop output impeda	nce	I ^O = 0		25°C		280		Ω
	Oommon mede seterat			D- 50.0	25°C	72	90		.15
CMRR	Common-mode rejection	rauo	$V_{IC} = V_{ICR}min$,	K2 = 20 02	Full range	70			dB
kau -		otio $(\Lambda)/\sigma = (\Lambda)/\tau$	$V_{CC\pm} = \pm 5 V \text{ to}$	±15 V,	25°C	75	93		סוק
^k SVR	Supply-voltage rejection r	and $(\nabla A CC^{\mp} / \nabla A O)$	$RS = 50 \Omega$		Full range	75			dB
1	Supply ourrest				25°C		290	350	
ICC	Supply current		VO = 0,	No load	Full range			375	μA
∆ICC	Supply-current change ov temperature range	er operating	v U = 0,		Full range		34		μΑ

[†]Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{CC \pm} = ±15 V (unless otherwise noted)

	PARAMETER	те	ST CONDITIO	NS	т _А †		IC, TLE2 .E2161B0		UNIT
						MIN	TYP	MAX	
SR	Slew rate (see Figure 1)	Avd = 5,	$P_{1} = 10 k_{0}$	C _I = 100 pF	25°C	7	10		V/µs
	Siew rate (see righte r)	AVD = 3,	ις_ = 10 κs2,	0 <u> </u>	Full range	5			ν/μ5
V	Equivalent input noise voltage	R _S = 20 Ω,	f = 10 Hz		25°C		70	100	nV/√Hz
Vn	(see Figure 2)	R _S = 20 Ω,	f = 1 kHz		250		40	60	
V _{n(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10	Hz		25°C		1.1		μV
I _n	Equivalent input noise current	f = 1 kHz			25°C		1.1		fA/√Hz
THD	Total harmonic distortion	$V_{O(PP)} = 2 V,$ $R_L = 10 k\Omega$	$A_{VD} = 5$,	f = 10 kHz,	25°C		0.025%		
	Gain-bandwidth product	f = 100 kHz,	R _L = 10 kΩ,	C _L = 100 pF	25°C		6.4		MHz
	(see Figure 3)	f = 100 kHz,	R _L = 600 Ω,	C _L = 100 pF	25'0		5.6		IVITIZ
	Cottling time	ε = 0.1%			2500		5		
t _S	Settling time	ε = 0.01%			25°C		10		μs
BOM	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \ k\Omega$		25°C		116		kHz
	Bhasa margin (aga Figura 2)	A _{VD} = 5,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	25°C		72°		
Φm	Phase margin (see Figure 3)	A _{VD} = 5,	RL = 600 Ω,	C _L = 100 pF	250		78°		

[†] Full range is 0°C to 70°C.

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	TAT	TLE216 TL	1I, TLE2 .E2161B		UNIT
						MIN	TYP	MAX	
		TLE21611			25°C		0.8	3.1	
		TLEZION			Full range			4.4	
VIO	Input offset voltage	TLE2161AI			25°C		0.6	2.6	mV
٩O	input onset voltage	TEEZTOTAI			Full range			3.9	IIIV
		TLE2161BI			25°C		0.5	1.9	
				D	Full range			2.7	
ανιο	Temperature coefficient of input	-	$V_{IC} = 0,$	$R_S = 50 \Omega$	Full range		6		μV/°C
	Input offset voltage long-term dr (see Note 4)	ift			25°C		0.04		μV/mo
IIO	Input offset current				25°C		1		pА
10	input onset ourient				Full range			2	nA
Iв	Input bias current				25°C		3		pА
					Full range			4	nA
					25°C	-1.6 to	-2 to		
					23.0	4	6		
VICR	Common-mode input voltage ra	nge				-1.6			V
					Full range	to			
						4			
			$R_L = 10 \ k\Omega$		25°C	3.5	3.7		
VOM +	Maximum positive peak output v	roltage			Full range	3.1	0.4		V
			$R_L = 100 \Omega$		25°C	2.5 2	3.1		
					Full range 25°C	-3.7	-3.9		
			$R_L = 10 \ k\Omega$		Full range	-3.1	-5.5		
VOM –	Maximum negative peak output	voltage swing			25°C	-2.5	-2.7		V
			RL = 100 Ω		Full range	-2	2.7		
					25°C	15	80		
			$V_{O} = \pm 2.8 V_{0}$	$R_L = 10 \ k\Omega$	Full range	2			
				D 100.0	25°C	0.75	45		.,, .,
AVD	Large-signal differential voltage	amplification	$V_{O} = 0$ to 2 V,	$R_{L} = 100 \Omega$	Full range	0.5			V/mV
				D: 400.0	25°C	0.5	3		
			$V_{O} = 0$ to $-2 V$,	$RL = 100 \Omega$	Full range	0.25			
r _i	Input resistance				25°C		1012		Ω
ci	Input capacitance				25°C		4		pF
z ₀	Open-loop output impedance		IO = 0		25°C		280		Ω
CMRR	Common-mode rejection ratio		V _{IC} =V _{ICR} min,	$B_{0} = 50.0$	25°C	65	82		dB
U					Full range	65			
k SVR	Supply-voltage rejection ratio (∆	$V_{CC+}/\Delta V_{IO}$	$V_{CC\pm} = \pm 5 V to$	o ± 15 V,	25°C	75	93		dB
UVIN		001/-10/	R _S = 50 Ω		Full range	65			
Icc	Supply current				25°C		280	325	μA
00			$V_{O} = 0,$	No load	Full range			350	
∆ICC	Supply-current change over ope temperature range	rating			Full range		29		μA

[†] Full range is – 40°C to 85°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted)

	PARAMETER	те	ST CONDITIO	NS	т _А †		1I, TLE21 E2161BI		UNIT
						MIN	TYP	MAX	
SR	Slew rate (see Figure 1)	Aug = 5	$P_{\rm L} = 10 k_{\rm O}$	C _I = 100 pF	25°C	7	10		V/µs
SK	Siew fale (see Figure T)	Av <u>D</u> = 5,	$K_{L} = 10 K_{22},$	$C_{L} = 100 \text{ pr}$	Full range	5			v/µs
V	Equivalent input noise	R _S = 20 Ω,	f = 10 Hz		25°C		59	100	nV/√ Hz
Vn	voltage (see Figure 2)	R _S = 20 Ω,	f = 1 kHz		25 0		43	60	nv/vHz
V _{n(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10) Hz		25°C		1.1		μV
I _n	Equivalent input noise current	f = 1 kHz			25°C		1		fA/√Hz
THD	Total harmonic distortion	$V_{O(PP)} = 2 V,$ $R_L = 10 k\Omega$	A _{VD} = 5,	f = 10 kHz,	25°C	(0.025%		
	Gain-bandwidth product	f = 100 kHz,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	25°C		5.8		MHz
	(see Figure 3)	f = 100 kHz,	RL = 100 Ω,	C _L = 100 pF	25'0		4.3		IVITIZ
	Settling time	ε = 0.1%			25°C		5		
t _s	Setung une	ε = 0.01%			25 0		10		μs
BOM	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \ k\Omega$		25°C		420		kHz
ф.	Dhana margin (ana Figura 2)	A _{VD} = 5,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	25°C		70°		
Φm	Phase margin (see Figure 3)	A _{VD} = 5,	R _L = 100 Ω,	C _L = 100 pF	250		84°		

[†]Full range is – 40°C to 85°C.

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)

	PARAMET	ER	TEST COM	NDITIONS	т _А †		51I, TLE2 E2161B		UNIT
						MIN	TYP	MAX	
		TLE21611			25°C		0.6	3	
		TLEZIOTI			Full range			4.3	
VIO	Input offset voltage	TLE2161AI			25°C		0.5	1.5	mV
чЮ	input onset voltage	TLLZIOTAI			Full range			2.9	IIIV
		TLE2161BI			25°C		0.3	0.5	
			V _{IC} = 0,	Rs = 50 Ω	Full range			1.3	
ανιο	Temperature coefficient		VIC = 0,	112 - 00 22	Full range		6		μV/°C
	Input offset voltage long	-term drift (see Note 4)			25°C		0.04		μV/m
IIO	Input offset current				25°C		2		pА
10	input onset outront				Full range			3	nA
IB	Input bias current				25°C		4		pА
чв	input bias current				Full range			5	nA
.,					25°C	-11 to 13	-12 to 16		V
VICR	Common-mode input vo	ltage range			Full range	-11 to 13			V
			D 4010		25°C	13.2	13.7		
	Maria da ser a contra da contra		$R_L = 10 \ k\Omega$		Full range	13			
VOM +	Maximum positive peak	output voitage swing	D: 000.0		25°C	12.5	13.2		V
			RL = 600 Ω		Full range	12			
			R _L = 10 kΩ		25°C	-13.2	-13.7		
Var	Maximum negative peak		$K_{L} = 10 \text{ K}_{22}$		Full range	-13			v
VOM –	waximum negative pear	t output voltage swillig	RL = 600 Ω		25°C	-12.5	-13		v
			RL = 600 22		Full range	-12			
			$\gamma = \pm 10 \gamma$	RL = 10 kΩ	25°C	30	230		
			$V_0 = \pm 10 V$,	KL = 10 KS2	Full range	20			
A	Lorgo signal differential	voltage emplification	$V_0 = 0$ to 8 V,	R _L = 600 Ω	25°C	25	100		V/m\
AVD	Large-signal differential	voltage amplification	$v_0 = 0.08 v,$	KL = 000 32	Full range	10			V/IIIV
			$V_0 = 0 \text{ to} - 8 \text{ V},$	$P_{1} = 600.0$	25°C	3	25		
			v0=010=0v,	IKL = 000 32	Full range	1			
ri	Input resistance				25°C		1012		Ω
ci	Input capacitance				25°C		4		pF
z _o	Open-loop output imped	ance	I _O = 0		25°C		280		Ω
CMRR	Common-mode rejection	n ratio	VIC=VICRmin,	R _S = 50 Ω	25°C Full range	72 65	90		dB
^k svr	Supply-voltage rejection	ratio ($\Delta V_{CC\pm} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 5 V to$ R _S = 50 Ω	o ±15 V,	25°C Full range	75 65	93		dB
ICC	Supply current				25°C		290	350	μA
	Supply-current change of	over operating	V _O = 0,	No load	Full range		34	375	μΑ

[†]Full range is – 40°C to 85°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA= 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)

	PARAMETER	те	ST CONDITIO	NS	τ _A †		61I, TLE2 ⁻ _E2161IB		UNIT
						MIN	TYP	MAX	
SR	Slew rate (see Figure 1)	Avd = 5,	$P_{1} = 10 k_{0}$	C _I = 100 pF	25°C	7	10		V/µs
	Siew rate (see righte r)	AVD = 3,	ις_ = 10 κ <u>s</u> 2,	0 <u> </u>	Full range	5			ν/μ5
V	Equivalent input noise voltage	R _S = 20 Ω,	f = 10 Hz		25°C		70	100	nV/√ Hz
Vn	(see Figure 2)	R _S = 20 Ω,	f=1 kHz		25 0		40	60	nv/vHz
V _{n(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10) Hz		25°C		1.1		μV
In	Equivalent input noise current	f = 1 kHz			25°C		1.1		fA/√Hz
THD	Total harmonic distortion	$V_{O(PP)} = 2 V,$ $R_L = 10 k\Omega$	A _{VD} = 5,	f = 10 kHz,	25°C		0.025%		
	Gain-bandwidth product	f = 100 kHz,	RL = 10 kΩ,	C _L = 100 pF	25°C		6.4		MHz
	(see Figure 3)	f = 100 kHz,	R _L = 600 Ω,	C _L = 100 pF	25'0		5.6		MIL
	Cattling time	ε = 0.1%			2500		5		
t _s	Settling time	ε = 0.01%			25°C		10		μs
BOM	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \ k\Omega$		25°C		116		kHz
A	Phone margin (and Figure 2)	A _{VD} = 5,	RL = 10 kΩ,	C _L = 100 pF	25°C		72°		
Φm	Phase margin (see Figure 3)	A _{VD} = 5,	R _L = 600 Ω,	C _L = 100 pF	25-0		78°		

[†] Full range is – 40°C to 85°C.

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS	т _А †	TL	E2161A	TLE2161M TLE2161AM TLE2161BM			
						MIN	TYP	MAX	1		
		-			25°C		0.8	3.1			
		TLE2161M			Full range			6	1		
	have at a ffer a family and		-		25°C		0.6	2.6			
VIO	Input offset voltage	TLE2161AM			Full range			4.6	mV		
		TIFOLOADIA			25°C		0.5	1.9	1		
		TLE2161BM			Full range			3.1	1		
αΛΙΟ	Temperature coefficient of voltage	input offset	V _{IC} = 0,	$R_{S} = 50 \ \Omega$	Full range		6		μV/°C		
	Input offset voltage long-te (see Note 4)	rm drift			25°C		0.04		μV/mo		
l	Input offect ourrest				25°C		1		pА		
IIO	Input offset current				Full range			15	nA		
	lonut high ourrent		7		25°C		3		pА		
IВ	Input bias current				Full range			30	nA		
VICR Common-mode input volta					25°C	-1.6 to 4	-2 to 6		V		
		ge range			Full range	-1.6 to 4			V		
			D 4010		25°C	3.5	3.7				
		All packages	$R_L = 10 \text{ k}\Omega$	Full range	3			V			
\/	Maximum positive peak	FK and JG	D: 000.0		25°C	2.5	3.6				
VOM +	output voltage swing	packages	R _L = 600 Ω		Full range	2					
		D and P	D 400.0	25°C	2.5	3.1		V			
		packages	R _L = 100 Ω		Full range	2					
					25°C	-3.7	-3.9				
		All packages	$R_L = 10 k\Omega$		Full range	-3					
\/~··	Maximum negative peak	FK and JG	$P_{\rm t} = 600.0$		25°C	-2.5	-3.5		v		
VOM -	output voltage swing	packages	KL = 000 32	$R_L = 600 \Omega$		-2			v		
		D and P	$P_{\rm L} = 100.0$		25°C	-2.5	-2.7				
		packages	R _L = 100 Ω		Full range	-2					
				D. 10 kg	25°C	15	80				
		All packages	$V_0 = \pm 2.8 V,$	$R_L = 10 \ k\Omega$	Full range	2					
			$V_0 = 0$ to 2.5 V,	PL - 600 O	25°C	1	65				
		FK and JG	$v_0 = 0.02.5 v,$	KL = 000 32	Full range	0.5					
	Large-signal differential voltage amplification	packages	$V_0 = 0$ to -2.5 V,	$R_1 = 600 0$	25°C	1	16		V/mV		
AVD			$v_0 = 0.0 - 2.3 v$,	NL = 000 32	Full range	0.5			v/IIIV		
			$V_0 = 0$ to 2 V,	$R_{1} = 100.0$	25°C	0.75	45				
		D and P	$v_0 = 0 \ 0 \ 2 \ v_{,}$	KL = 100 32	Full range	0.5					
		packages	$V_0 = 0$ to $2V_0$	$R_{1} = 100.0$	25°C	0.5	3				
			$V_0 = 0 \text{ to } -2 \text{ V}, R_L = 100 \Omega$		Full range	0.25					

[†] Full range is – 55°C to 125°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

electrical characteristics at specified free-air temperature, V_{CC \pm} = \pm 5 V (unless otherwise noted continued)

PARAMETER		TEST CONDITIONS	T _A †	TL TL TL	М	UNIT	
				MIN	TYP	MAX	
r _i	Input resistance		25°C		1012		Ω
с _і	Input capacitance		25°C		4		pF
z _o	Open-loop output impedance	IO = 0	25°C		280		Ω
	Common mode rejection ratio	$V_{\rm Loop} = V_{\rm Loop} = R_0 = 50.0$	25°C	65	82		dB
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min, $R_S = 50 \Omega$	Full range	60			
key in	Supply voltage rejection ratio $(A)/a = (A)/a$	$V_{CC\pm} = \pm 5 V \text{ to } \pm 15 V,$	25°C	75	93		dB
^k SVR	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$R_{S} = 50 \Omega$	Full range	65			ав
	Currently suggest		25°C		280	325	
ICC	Supply current	$V_{O} = 0$, No load	Full range			350	μA
∆ICC	Supply-current change over operating temperature range		Full range		39		μΑ

[†] Full range is – 55°C to 125°C.

operating characteristics, V_{CC \pm} = \pm 5 V, T_A = 25°C

	PARAMETER		EST CONDITIO	TLE2161M TLE2161AM TLE2161BM			UNIT			
					MIN	TYP	MAX			
SR	Slew rate (see Figure 1)	$A_{VD} = 5$,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF		10		V/µs		
V	Faulty cleant input point weltage (and Figure 2)	R _S = 20 Ω,	f = 10 Hz			59				
Vn	Equivalent input noise voltage (see Figure 2)	R _S = 20 Ω,	f = 1 kHz			43		nV/√Hz		
V _{n(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to	10 Hz	1.1			μV			
In	Equivalent input noise current	f = 1 kHz				1		fA/√Hz		
THD	Total harmonic distortion	$A_{VD} = 5,$ $R_L = 10 \text{ k}\Omega$	V _{O(PP)} = 2 V,	f = 10 kHz,		0.025%				
	Opin kandwidth andwat (and Figure 2)	f = 100 kHz,	$R_L = 10 \text{ k}\Omega,$	C _L = 100 pF		5.8		A 41 J		
	Gain-bandwidth product (see Figure 3)	f = 100 kHz,	$R_L = 600 \text{ k}\Omega,$	C _L = 100 pF		4.3		MHz		
	Cattling time	ε = 0.1%			5		μs			
t _S	Settling time	ε = 0.01%	ε = 0.01%				10			
ВОМ	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \ k\Omega$			420		kHz		
<u>ل</u>		A _{VD} = 5,	$R_L = 10 \text{ k}\Omega,$	C _L = 100 pF		70°				
φm	Phase margin (see Figure 3)	A _{VD} = 5,	RL = 600 Ω,	C _L = 100 pF		84°]		

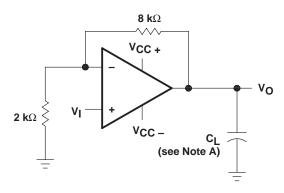
electrical characteristics at specified free-air temperature, V_{CC \pm} = ±15 V (unless otherwise noted)

	PARAMET	TEST CON	DITIONS	T _A †	ть	LE2161N E2161A E2161B	м	UNIT	
						MIN	TYP	MAX	
		TIFOTOTIA			25°C		0.6	3	
		TLE2161M			Full range			6	
	Innut offect voltoge				25°C		0.5	1.5	
VIO	Input offset voltage	TLE2161AM			Full range			3.6	mV
		TLE2161BM			25°C		0.3	0.5	
					Full range			1.7	
ανιο		nt of input offset voltage	V _{IC} = 0,	R _S = 50 Ω	Full range		6		μV/°C
	Input offset voltage lon (see Note 4)	ng-term drift			25°C		0.04		μV/mc
10	Input offset current				25°C		2		pА
0	input onset ourient		1		Full range			20	nA
IB	Input bias current				25°C	L	4		pА
	1				Full range			40	nA
VICR	Common-mode input v	voltage range			25°C	-11 to 13	-12 to 16		V
		ionago rango			Full range	-11 to 13			V
V _{OM +}			RL = 10 kΩ		25°C	13.2	13.7		
	Maximum positive pea	k outout voltage swing			Full range	12.5			V
	Maximum positive pea	in output voltage swing	$R_L = 600 \Omega$		25°C	12.5	13.2		
					Full range 25°C	12			
				$R_L = 10 k\Omega$		-13.2	-13.7		-
Vom –	Maximum negative pe	ak output voltage swing	-		Full range	-12.5			v
OW	0 1		RL = 600 Ω		25°C	-12.5	-13		
			-		Full range	-12			
			$V_{O} = \pm 10 V$,	$R_L = 10 \ k\Omega$	25°C	30	230		
					Full range	20	100		
AVD	Large-signal differentia	al voltage amplification	$V_{O} = 0$ to 8 V,	$R_L = 600 \ \Omega$	25°C Full range	25 7	100		V/mV
					25°C	3	25		
			$V_{O} = 0 \text{ to} - 8 \text{ V},$	R_{L} = 600 Ω	Full range	1	20		
r _i	Input resistance				25°C	<u>'</u>	1012		Ω
ci	Input capacitance				25°C		4		pF
z _o	Open-loop output impe	edance	I _O = 0		25°C		280		Ω
			-		25°C	72	90		
CMRR	Common-mode rejecti	on ratio	$V_{IC} = V_{ICR}min$,	_	Full range	65			dB
ksvr	Supply-voltage rejection	on ratio ($\Delta V_{CC+} / \Delta V_{IO}$)	$V_{CC\pm} = \pm 5 V \text{ to}$	±15 V,	25°C	75	93		dB
OVIX	11,7		R _S = 50 Ω		Full range	65			
ICC	Supply current	v current			25°C	 	290	350	μA
	Supply-current change over operating temperature range		$V_{O} = 0$, No load		Full range Full range		46	375	μΑ

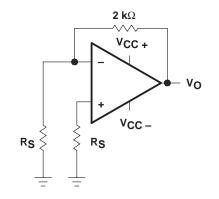
[†] Full range is -55° C to 125° C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

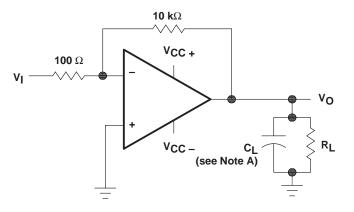
operating characteristics at specified free-air temperature, V_{CC \pm} = \pm 15 V (unless otherwise noted)


	PARAMETER	TE	TEST CONDITIONS				TLE2161M TLE2161AM TLE2161BM		
						MIN	TYP	MAX	
SR	Slew rate (see Figure 1)	AVD = 5,	R _I = 10 kΩ,	C _I = 100 pF	25°C	7	10		V/µs
51	Siew fale (See Figure T)	AVD = 3,	R L = 10 K S2,	NC = 10 K32, OC = 100 pr		5			v/µs
V	Equivalent input noise voltage	R _S = 20 Ω,	f = 10 Hz		25°C		70		nV/√Hz
Vn	(see Figure 2)	R _S = 20 Ω,	f=1 kHz		250		nv/∿Hz		
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 Hz to 10	25°C	1.1			μV		
In	Equivalent input noise current	f = 1 Hz	25°C		1.1		fA/√Hz		
тно	Total harmonic distortion	$V_{O(PP)} = 2 V,$ $R_L = 10 k\Omega$	A _{VD} = 5,	f = 10 kHz,	25°C		0.025%		
	Gain-bandwidth product	f = 100 kHz,	$R_L = 10 \text{ k}\Omega$,	C _L = 100 pF	25°C		6.4		MHz
	(see Figure 3)	f = 100 kHz,	$R_L = 600 \Omega$,	C _L = 100 pF	25'0		5.6		MILZ
	Cattling time	ε = 0.1%			25°C		5		
t _S	Settling time	ε = 0.01%			25'0		10		μs
BOM	Maximum output-swing bandwidth	A _{VD} = 5,	$R_L = 10 \text{ k}\Omega$		25°C		116		kHz
4	Dhana margin (and Figure 2)	A _{VD} = 5,	$A_{VD} = 5$, $R_{L} = 10 \text{ k}\Omega$, $C_{L} = 100 \text{ pF}$		25°C		72°		
Φm	Phase margin (see Figure 3)	A _{VD} = 5,	$R_L = 600 \Omega$,	C _L = 100 pF	25%		78°		

[†] Full range is – 55°C to 125°C.


SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

PARAMETER MEASUREMENT INFORMATION



NOTE A: CL includes fixture capacitance.

Figure 3. Gain-Bandwidth Product and Phase-Margin Test Circuit

typical values

Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

Input bias and offset current

At the picoampere bias-current level typical of the TLE2161, TLE2161A, and TLE2161B, accurate measurement of the bias current becomes difficult. Not only does this measurement require a picoammeter, but test socket leakages can easily exceed the actual device bias currents. To accurately measure these small currents, Texas Instruments uses a two-step process. The socket leakage is measured using picoammeters with bias voltages applied but with no device in the socket. The device is then inserted into the socket, and a second test that measures both the socket leakage and the device input bias current is performed. The two measurements are then subtracted algebraically to determine the bias current of the device.

TYPICAL CHARACTERISTICS

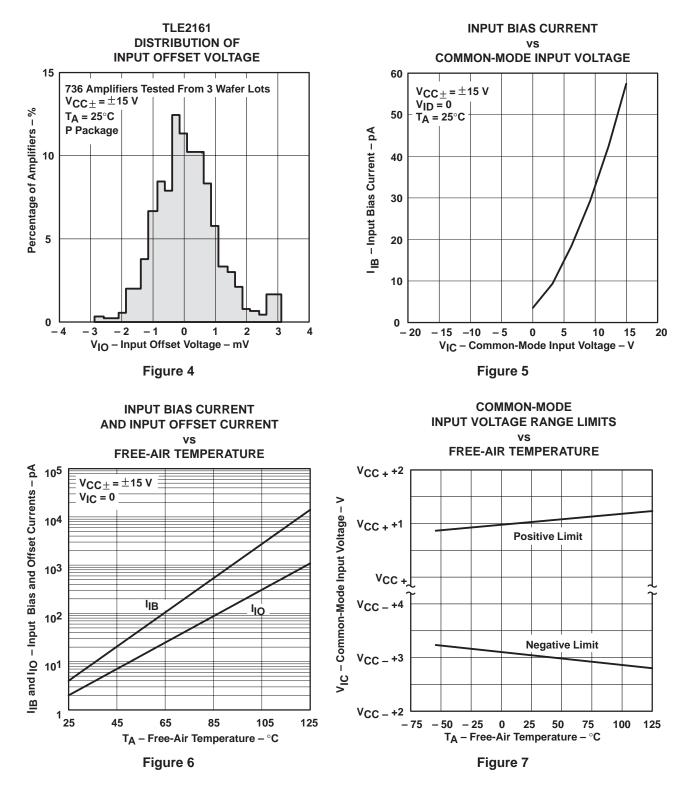
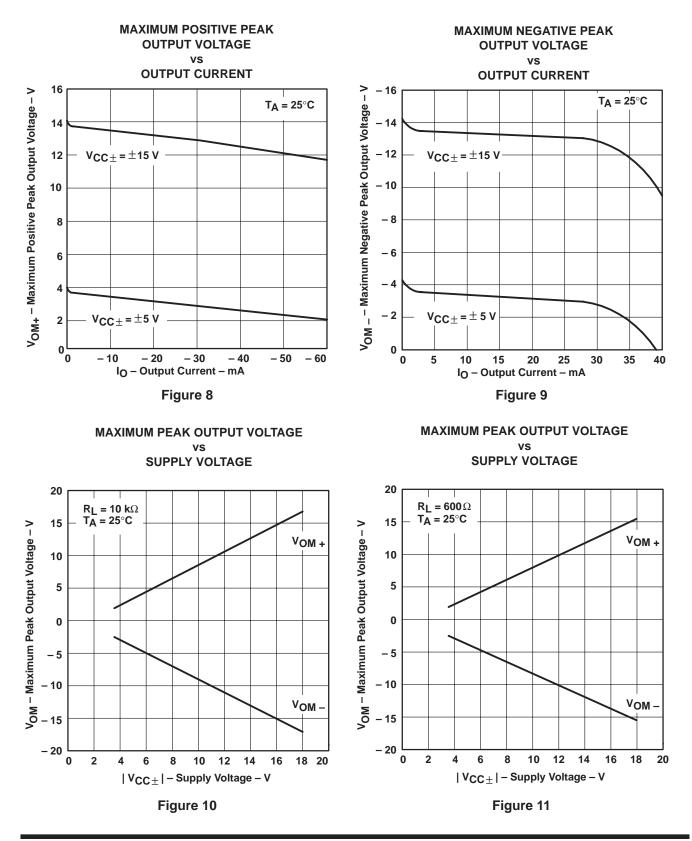
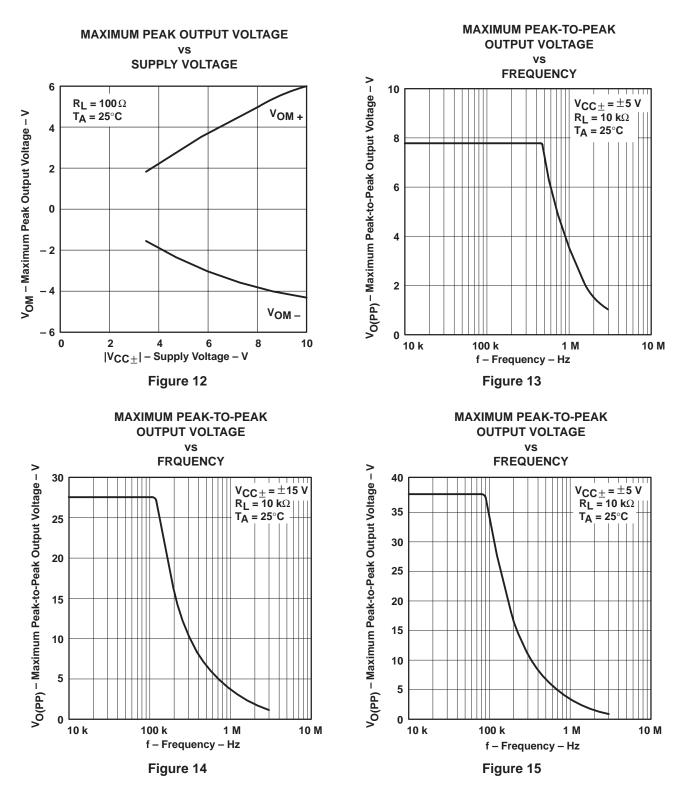

Table of Graphs

			FIGURE
VIO	Input offset voltage	Distribution	4
I _{IB}	Input bias current	vs Common-mode input voltage vs Free-air temperature	5 6
IIO	Input offset current	vs Free-air temperature	6
VICR	Common-mode input voltage range limits	vs Free-air temperature	7
VOM	Maximum positive peak output voltage	vs Output current	8
VOM	Maximum negative peak output voltage	vs Output current	9
VOM	Maximum peak output voltage	vs Supply voltage	10, 11, 12
VO(PP)	Maximum peak-to-peak output voltage	vs Frequency	13, 14, 15
AVD	Large-signal differential voltage amplification	vs Frequency vs Free-air temperature	16 17
IOS	Short-circuit output current	vs Elapsed time	18
	Large-signal voltage amplification	vs Free-air temperature	19
z ₀	Output impedance	vs Frequency	20
CMRR	Common-mode rejection ratio	vs Frequency	21
ICC	Supply current	vs Supply voltage vs Free-air temperature	22 23
	Pulse response	Small signal Large signal	24, 25 26, 27
	Noise voltage (referred to input)	0.1 to 10 Hz	28
Vn	Equivalent input noise voltage	vs Frequency	29
THD	Total harmonic distortion	vs Frequency	30, 31
	Gain-bandwidth product	vs Supply voltage vs Free-air temperature	32 33
φm	Phase margin	vs Supply voltage vs Free-air temperature	34 35
	Phase shift	vs Frequency	16

SLOS049D – NOVEMBER 1989 – REVISED MAY 1996

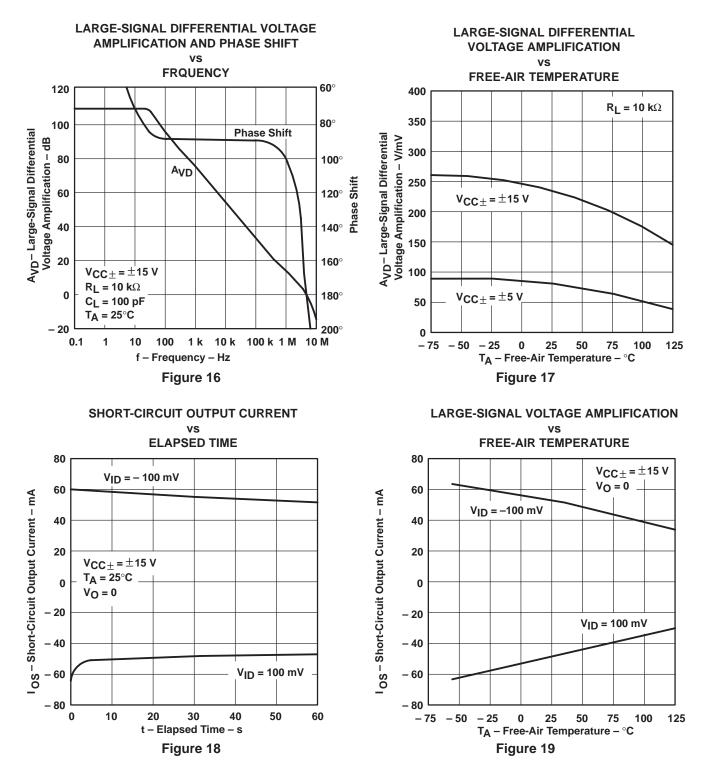

TYPICAL CHARACTERISTICS[†]

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



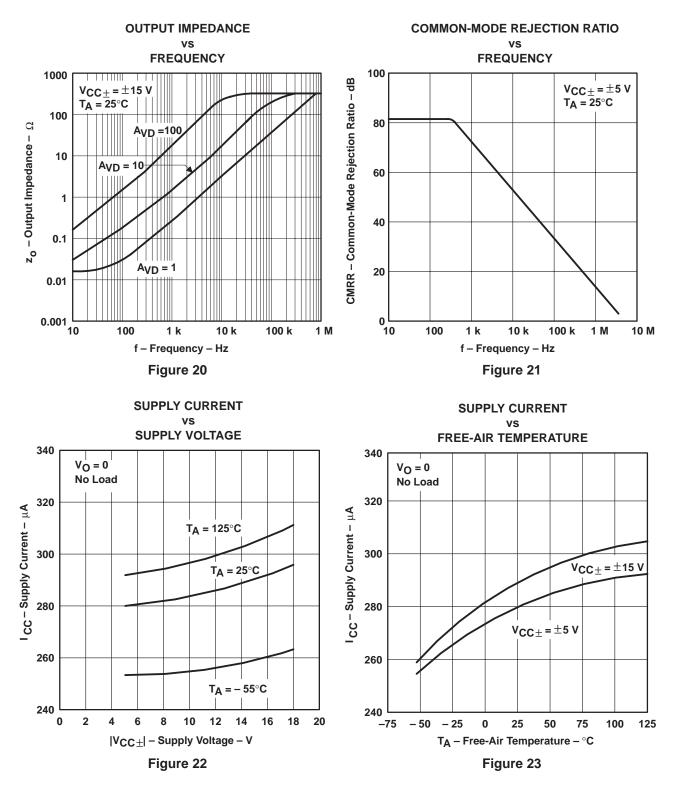
TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS



20

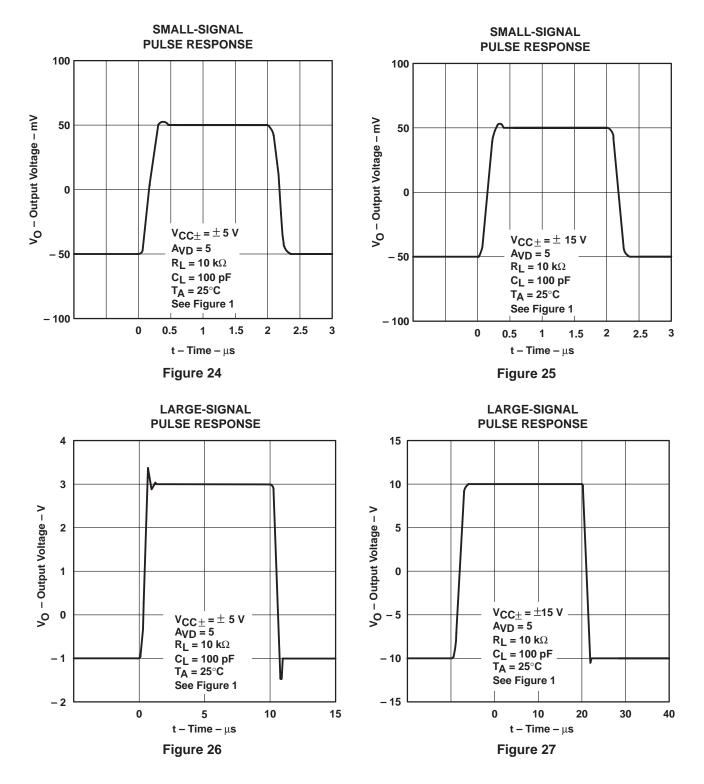
SLOS049D - NOVEMBER 1989 - REVISED MAY 1996



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

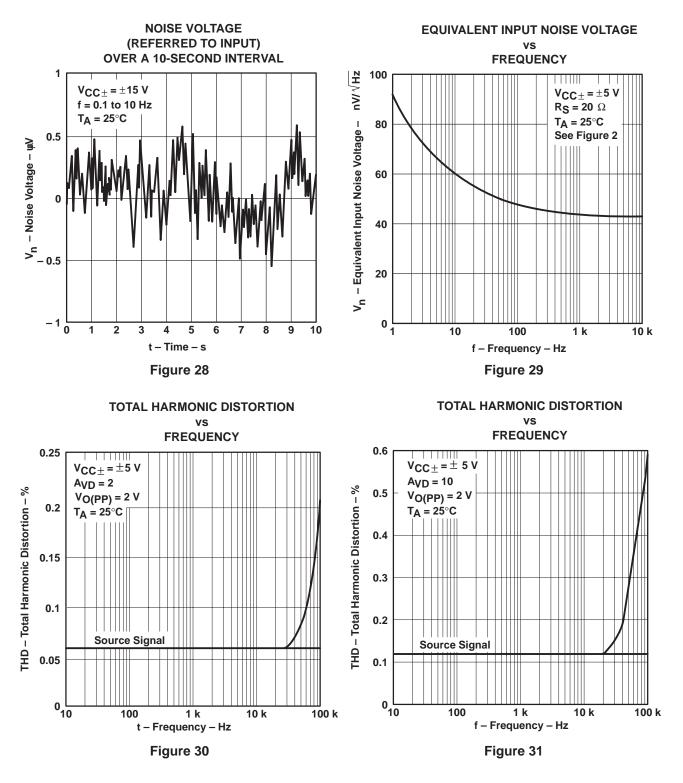
SLOS049D – NOVEMBER 1989 – REVISED MAY 1996

TYPICAL CHARACTERISTICS[†]

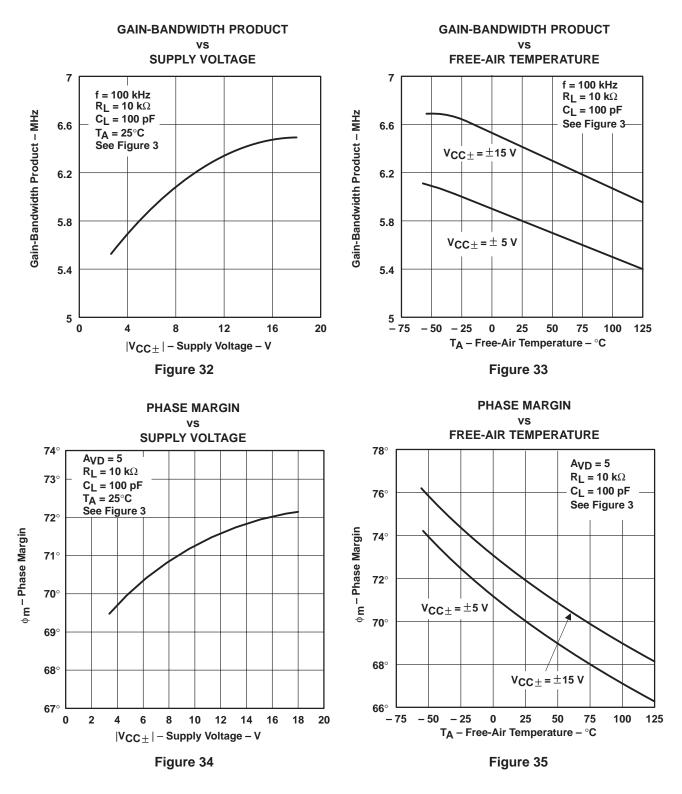


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

22


TYPICAL CHARACTERISTICS

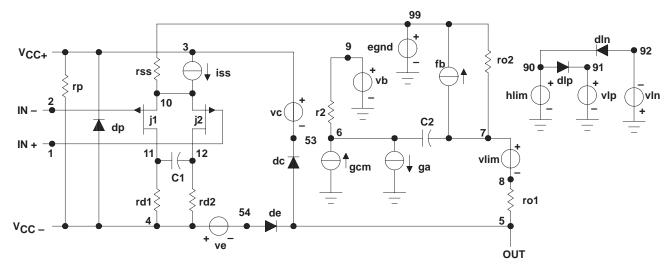
SLOS049D - NOVEMBER 1989 - REVISED MAY 1996


TYPICAL CHARACTERISTICS

24

TYPICAL CHARACTERISTICS

SLOS049D - NOVEMBER 1989 - REVISED MAY 1996


APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim $Parts^{TM}$, the model generation software used with Microsim $PSpice^{TM}$. The Boyle macromodel (see Note 5) and subcircuit in Figure 36 and Figure 37 were generated using the TLE2161 typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Gain-bandwidth product
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

Figure 36. Boyle Macromodel

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

PSpice and Parts are trademark of MicroSim Corporation.

APPLICATION INFORMATION

macromodel information (continued)

.subck	t TI	LE216	51 1 2 3 4 5
cl	11	12	125.4E-14
c2	6	7	5.000E-12
dc	5	53	dx
de	54	5d	Х
dlp	90	91	dx
dln	92	90	dx
dp	4	3	dx
egnd	99	0	poly(2) (3,0) (4,0) 0 .5 .5
fb	7	99	poly(5) vb vc ve vlp vln 0 4.085E6 -4E6 4E6 4E6 -4E6
ga	6	0	11 12 201.1E-6
gcm	0	б	10 99 3.576E-9
iss	3	10	dc 45.00E-6
hlim	90	0	vlim 1K
j1	11	2	10 jx
j2	12	1	10 jx
r2	6	9	100.0E3
rdl	4	11	4.973E3
rd2	4	12	4.973E3
rol	8	5	280
ro2	7	99	280
rp	3	4	113.2E3
rss	10	99	4.444E6
vb	9	0	dc 0
VC	3	53	dc 2
ve	54	4	dc 2
vlim	7	8	dc 0
vlp	91	0	dc 50
vln	0	92	dc 50
.model		D	(Is=800.0E-18)
.model	JX	Fî F,	(Is=1.000E-12 Beta=480E-6 Vto=-1)
.ends			

Figure 37. Macromodel Subcircuit

SLOS049D - NOVEMBER 1989 - REVISED MAY 1996

APPLICATION INFORMATION

input characteristics

The TLE2161, TLE2161A and TLE2161B are specified with a minimum and a maximum input voltage that if exceeded at either input could cause the device to malfunction.

Because of the extremely high input impedance and resulting low bias-current requirements, the TLE2161, TLE2161A, and TLE2161B are well suited for low-level signal processing; however, leakage currents on printed circuit boards and sockets can easily exceed bias-current requirements and cause degradation in system performance. It is a good practice to include guard rings around inputs (see Figure 38). These guards should be driven from a low-impedance source at the same voltage level as the common-mode input.

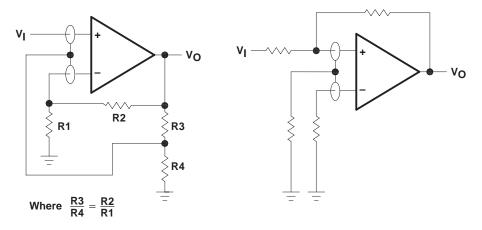


Figure 38. Use of Guard Rings

input offset voltage nulling

The TLE2161 series offers external null pins that can further reduce the input offset voltage. The circuit in Figure 39 can be connected as shown if the feature is desired. When external nulling is not needed, the null pins may be left disconnected.

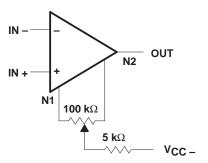


Figure 39. Input Offset Voltage Nulling

www.ti.com

16-Oct-2009

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9095801Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9095801QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
5962-9095802Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9095802QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
5962-9095803Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9095803QPA	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLE2161ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161ACP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161AIP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLE2161AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLE2161BCP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161BIP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161BMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLE2161BMJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLE2161BMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLE2161BMP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161CP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TLE2161IP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI
TLE2161MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
TLE2161MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type
TLE2161MP	OBSOLETE	PDIP	Р	8		TBD	Call TI	Call TI

www.ti.com

16-Oct-2009

⁽¹⁾ The marketing status values are defined as follows:

RUMENTS

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device.

OBSOLETE: It has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

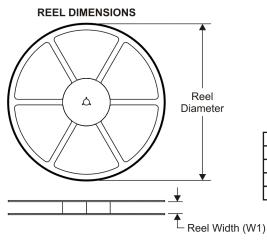
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

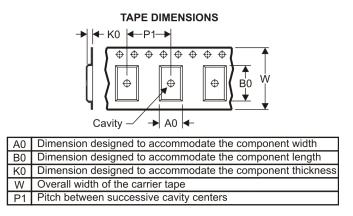
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

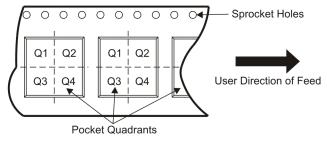
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

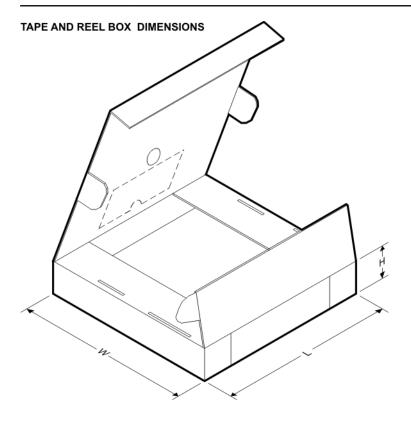

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLE2161AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2161IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2161IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

2-Sep-2010

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLE2161AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2161IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2161IDR	SOIC	D	8	2500	346.0	346.0	29.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated