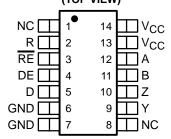
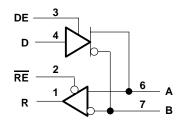

SN65MLVD200, SN65MLVD202 SN65MLVD204, SN65MLVD205 MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS

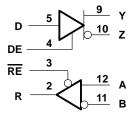
SLLS463E - SEPTEMBER 2001 - REVISED JUNE 2003


- Low-Voltage Differential 30-Ω Line Drivers and Receivers for Signaling Rates[†] up to 100 Mbps
- Power Dissipation at 100 Mbps
 - Driver: 50 mW TypicalReceiver: 30 mW Typical
- Meets or Exceeds Current Revision of M-LVDS Standard TIA/EIA-899 for Multipoint Data Interchange
- Controlled Driver Output Voltage Transition Times for Improved Signal Quality
- -1-V to 3.4-V Common-Mode Voltage Range Allows Data Transfer With up to 2 V of Ground Noise
- Type-1 Receivers Incorporate 25 mV of Hysteresis

- Type-2 Receivers Provide an Offset (100 mV) Threshold to Detect Open-Circuit and Idle-Bus Conditions
- Operates From a Single 3.3-V Supply
- Propagation Delay Times Typically 2.3 ns for Drivers and 5 ns for Receivers
- Power-Up/Down Glitch-Free Driver
- Driver Handles Operation Into a Continuous Short Circuit Without Damage
- Bus Pins High Impedance When Disabled or V_{CC} ≤ 1.5 V
- 200-Mbps Devices Available (SN65MLVD201, 203, 206, and 207)

SN65MLVD200D (Marked as MF200) SN65MLVD204D (Marked as MF204) (TOP VIEW)


SN65MLVD202D (Marked as MLVD202) SN65MLVD205D (Marked as MLVD205) (TOP VIEW)


NC - No internal connection

logic diagram (positive logic)

SN65MLVD200, SN65MLVD204

SN65MLVD202, SN65MLVD205

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

†The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second) units.

TEXAS INSTRUMENTS

description

This series of SN65MLVD20x devices are low-voltage differential line drivers and receivers complying with the proposed multipoint low-voltage differential signaling (M-LVDS) standard (TIA/EIA–899). These circuits are similar to their TIA/EIA-644 standard compliant LVDS counterparts, with added features to address multipoint applications. Driver output current has been increased to support doubly-terminated, $50-\Omega$ load multipoint applications. Driver output slew rates are optimized for signaling rates up to 100 Mbps.

Types 1 and 2 receivers are available. Both types of receivers operate over a common-mode voltage range of –1 V to 3.4 V to provide increased noise immunity in harsh electrical environments. Type-1 receivers have their differential input voltage thresholds near zero volts (±50 mV), and include 25 mV of hysteresis to prevent output oscillations in the presence of noise. Type-2 receivers include an offset threshold to detect open-circuit, idle-bus, and other fault conditions, and provide a known output state under these conditions.

The intended application of these devices is in half-duplex or multipoint baseband data transmission over controlled impedance media of approximately $100-\Omega$ characteristic impedance. The transmission media may be printed circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application-specific characteristics).

These devices are characterized for operation from -40°C to 85°C.

AVAILABLE OPTIONS

NOMINAL SIGNALING RATE, Mbps	FOOTPRINT	RECEIVER TYPE	PART NUMBER†
100	SN75176	Type 1	SN65MLVD200D
100	SN75ALS180	Type 1	SN65MLVD202D
100	SN75176	Type 2	SN65MLVD204D
100	SN75ALS180	Type 2	SN65MLVD205D

[†] The D package is available taped and reeled. Add the R suffix to the device type (e.g., SN65MLVD200DR)

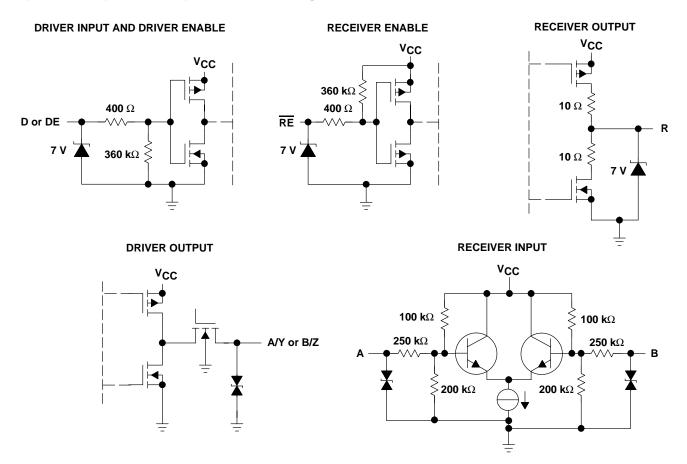
Function Tables

TYPE-1 RECEIVER (200, 202)

11FE-1 RECEIVER (200, 202)					
INPUTS		OUTPUT			
$V_{ID} = V_A - V_B$ RE		R			
V _{ID} ≥ 50 mV	L	Н			
-50 mV < V _{ID} < 50 mV	L	?			
$V_{ID} \le -50 \text{ mV}$	L	L			
X	Н	Z			
X	Open	Z			
Open Circuit	L	?			

TYPE-2 RECEIVER (204, 205)

INPUTS	OUTPUT	
$V_{ID} = V_A - V_B$	RE	R
V _{ID} ≥ 150 mV	L	Н
50 mV < V _{ID} < 150 mV	L	?
$V_{ID} \leq 50 \text{ mV}$	L	L
X	Н	Z
X	Open	Z
Open Circuit	L	L


DRIVER

INPUT	ENABLE	OUTPUTS				
D	DE	A OR Y	B OR Z			
L	Н	L	Н			
Н	Н	Н	L			
OPEN	Н	L	Н			
X	OPEN	Z	Z			
X	L	Z	Z			

H = high level, L = low level, Z = high impedance, X = Don't care, ? = indeterminate

equivalent input and output schematic diagrams

SN65MLVD200, SN65MLVD202 SN65MLVD204, SN65MLVD205 MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS

SLLS463E - SEPTEMBER 2001 - REVISED JUNE 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 4 V
Input voltage range: D, DE, RE	0.5 V to 4 V
A, B (200, 204)	–1.8 V to 4 V
A, B (202, 205)	–4 V to 6 V
Output voltage range: R	0.3 V to 4 V
Y, Z, A, or B	1.8 V to 4 V
Electrostatic discharge: Human body model (see Note 2)	A, B, Y, or Z ±3 kV
	All pins ±2 kV
Charged-device model (see Note 3)	All pins±500 V
Continuous power dissipation	(see Dissipation Rating table)
Storage temperature range	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 secon	ds 260°C

[†] Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.
 - 2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.
 - 3. Tested in accordance with JEDEC Standard 22, Test Method C101.

DISSIPATION RATING

PACKAGE	T _A ≤ 25°C POWER RATING	OPERATING FACTOR ABOVE T _A = 25°C	T _A = 85°C POWER RATING
D(8)	725 mW	5.8 mW/°C	377 mW
D(14)	950 mW	7.6 mW/°C	494 mW

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, VIH	2		VCC	V
Low-level input voltage, V _{IL}	0		8.0	V
Magnitude of differential input voltage, V _{ID}	0.05		VCC	V
Voltage at any bus terminal, V_A , V_Y , $V_{Z, or} V_B$	-1.4		3.8	V
Common-mode input voltage V _{CM} , (V _A + V _B)/2	-1		3.4	V
Receiver load capacitance, C _L	5		15	pF
Operating free-air temperature, T _A	-40		85	°C

device electrical characteristics over recommended operating conditions (unless otherwise noted)

		PARAMETER	TEST CONDITIONS	MIN†	TYP [‡]	MAX	UNIT	
I _{CC} Si		Receiver disabled and driver enabled	RE and DE at V_{CC} , $R_L = 50 \Omega$, All others open		13	22		
		Driver and receiver disabled	RE at V _{CC} , DE at 0 V, R _L = No load, All others open	1	7			
	Supply current		Receiver enabled and driver enabled	RE at 0 V, DE at V _{CC} , $R_L = 50 \Omega$, All others open, No receiver load		16	16 26	mA
		Receiver enabled and driver disabled	RE at 0 V, DE at 0 V, All others open, No receiver load		4	11		

[†] The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.

driver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN†	TYP‡ MAX	UNIT
V _{AB} or V _{YZ}	Differential output voltage magnitude	See Figure 2	480	650	mV
$\Delta V_{AB} $ or $\Delta V_{YZ} $	Change in differential output voltage magnitude between logic states	See Figure 2	-50	50	mV
Vos(ss)	Steady-state common-mode output voltage		0.8	1.2	V
ΔVOS(SS)	Change in steady-state common-mode output voltage between logic states	See Figure 3	-50	50	mV
V _{OS(PP)}	Peak-to-peak common-mode output voltage			150	mV
V _{A(OC)} or V _{Y(OC)}	Maximum steady-state open-circuit output voltage	05	0	2.4	٧
V _{B(OC)} or V _{Z(OC)}	Maximum steady-state open-circuit output voltage	See Figure 7	0	2.4	٧
V _{P(H)}	Voltage overshoot, low-to-high level output	0 - 5 Firmura 5		1.2V _{SS}	V
V _{P(L)}	Voltage overshoot, high-to-low level output	See Figure 5	-0.2V _{SS}		V
lН	High-level input current	V _{IH} = 2 V	0	10	μΑ
I _Ι Γ	Low-level input current	V _{IL} = 0.8 V	0	10	μΑ
los	Differential short-circuit output current	See Figure 4		24	mA
loz	High-impedance state output current (driver only)	$-1.4 \text{ V} \le (\text{V}_{\text{Y}} \text{ or V}_{\text{Z}}) \le 3.8 \text{ V},$ Other output at 1.2 V	-15	10	μΑ
lO(OFF)	Power-off output current (driver only)	$-1.4 \text{ V} \le (\text{V}_{\text{Y}} \text{ or V}_{\text{Z}}) \le 3.8 \text{ V},$ $\text{V}_{\text{CC}} \le 1.5 \text{ V},$ Other output at 1.2 V	-10	10	μА

[†] The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.

[‡] All typical values are at 25°C and with a 3.3-V supply voltage.

[‡] All typical values are at 25°C and with a 3.3-V supply voltage.

SN65MLVD200, SN65MLVD202 SN65MLVD204, SN65MLVD205 MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS

SLLS463E - SEPTEMBER 2001 - REVISED JUNE 2003

receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP†	MAX	UNIT	
V	Decitive mainer differential innertweltene threehold	Type 1				50	\/	
V _{IT+}	Positive-going differential input voltage threshold	Type 2				150	mV	
V- Noge		Type 1	See Figure 8,	-50			.,	
V _{IT} –	Negative-going differential input voltage threshold	Type 2	pe 2 Table 1 and Table 2	50			mV	
\/	(ID(HYS) Differential input voltage hysteresis, V _{IT+} – V _{IT}	Type 1		25			\/	
VID(HYS)	Differential input voltage hysteresis, V T+ - V T-	Type 2			0		mV	
Vон	High-level output voltage		$I_{OH} = -8 \text{ mA}$	2.4			V	
V_{OL}	Low-level output voltage		$I_{OL} = 8 \text{ mA}$			0.4	V	
lіН	High-level input current		V _{IH} = 2 V	-10		0	μΑ	
IIL	Low-level input current		V _{IL} = 0.8 V	-10		0	μΑ	
loz	High-impedance output current		V _O = 0 V or 3.6 V	-10		15	μΑ	

[†] All typical values are at 25°C and with a 3.3-V supply voltage.

bus input and output electrical characteritics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP† N	IAX	UNIT
		$V_A = 3.8 \text{ V}, \qquad V_B = 1.2 \text{ V}$	0		32	
IA	Receiver input or transceiver input/output current	$V_A = 0 \text{ V or } 2.4 \text{ V}, V_B = 1.2 \text{ V}$	-20		20	μΑ
	Carron	$V_A = -1.4 \text{ V}, \qquad V_B = 1.2 \text{ V}$	-32		0	
D		$V_B = 3.8 \text{ V}, \qquad V_A = 1.2 \text{ V}$	0		32	
lΒ	Receiver input or transceiver input/output current	$V_B = 0 \text{ V or } 2.4 \text{ V}, V_A = 1.2 \text{ V}$	-20		20	μΑ
		$V_B = -1.4 \text{ V}, \qquad V_A = 1.2 \text{ V}$	-32		0	
I _{AB}	Receiver input or transceiver input/output differential current ($I_A - I_B$)	$V_A = V_B$, $-1.4 \le V_A \le 3.8 \text{ V}$	-4		4	μА
		$V_A = 3.8 \text{ V}, \qquad V_B = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	0		32	
I _{A(OFF)}	Receiver input or transceiver input/output power-off current	$V_A = 0 \text{ V or } 2.4 \text{ V}, V_B = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
IAB (A) IA (OFF) IA (OFF)	power-on current	$V_A = -1.4 \text{ V}, \qquad V_B = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	-32		0	
		$V_B = 3.8 \text{ V}, \qquad V_A = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	0		32	
I _{B(OFF)}	Receiver input or transceiver input/output power-off current	$V_B = 0 \text{ V or } 2.4 \text{ V}, V_A = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	-20		20	μΑ
	power on ourient	$V_B = -1.4 \text{ V}, \qquad V_A = 1.2 \text{ V}, V_{CC} \le 1.5 \text{ V}$	-32		0	
I _{AB} (OFF)	Receiver input or transceiver input/output power-off differential current $(I_A - I_B)$	$V_A = V_B$, $-1.4 \le V_A \le 3.8 \text{ V}$, $V_{CC} \le 1.5 \text{ V}$	-4		4	μА
C _A	Receiver input, driver high-impedance output, or transceiver input/output	$V_A = 0.4 \sin(2E8\pi t) + 0.5$, $V_B = 1.2 V$		3		pF
CB	capacitance	$V_B = 0.4 \sin(2E8\pi t) + 0.5$, $V_A = 1.2 V$		3		pF

[†] All typical values are at 25°C and with a 3.3-V supply voltage.

driver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output		1.6	2.3	4.1	ns
tPHL	Propagation delay time, high-to-low-level output		1.6	2.3	4.1	ns
t _r	Differential output signal rise time	05	1.5	2	3	ns
tf	Differential output signal fall time	See Figure 5	1.5	2	3	ns
t _{sk(p)}	Pulse skew (tpHL tpLH)			30		ps
t _{sk(pp)}	Part-to-part skew (see Note 4)				900	ps
^t PZH	Propagation delay time, high-impedance-to-high-level output		1.5	3.7	6.5	ns
tPZL	Propagation delay time, high-impedance-to-low-level output	0 5 0	1.5	3.7	6.5	ns
tPHZ	Propagation delay time, high-level-to-high-impedance output	See Figure 6	1.3	3.5	6.8	ns
tPLZ	Propagation delay time, low-level-to-high-impedance output		1.8	3.5	6.1	ns
^t jit(per)	Period jitter, rms (1 standard deviation) (see Notes 5 and 6)	50-MHz clock input (see Figure 8)		23		ps
^t jit(cc)	Cycle-to-cycle jitter, peak (see Notes 5 and 6)	50-MHz clock input (see Figure 8)		180		ps
^t jit(pp)	Peak-to-peak jitter, (see Notes 5, 7, and 8)	100 Mbps 2 ¹⁵ –1 PRBS input (see Figure 8)		210		ps

[†] All typical values are at 25°C and with a 3.3-V supply voltage.

- NOTES: 4. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
 - 5. Jitter parameters are based on design and characterization. Stimulus system jitter of 11 ps t_{jit(per)}, 43 ps t_{jit(cc)}, or 54 ps t_{jit(pp)} have been subtracted from the values.
 - 6. Input voltage = 0 V to VCC, t_{Γ} = $t_{f} \leq$ 1 ns (20% to 80%), measured over 30k samples.
 - 7. Input voltage = 0 V to V_{CC} , $t_f = t_f \le 1$ ns (20% to 80%), measured over 100k samples.
 - 8. Peak-to-peak jitter includes jitter due to pulse skew $(t_{Sk(D)})$.

SN65MLVD200, SN65MLVD202 SN65MLVD204, SN65MLVD205 MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS

SLLS463E - SEPTEMBER 2001 - REVISED JUNE 2003

receiver switching characteristics over recommended operating conditions (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT	
Propagation delay time, low-to-high-level output		3	5	6.7	ns	
Propagation delay time, high-to-low-level output		3	4.6	6.7	ns	
Pulse skew (tpHL tpLH)	0 5 = 5 0 = 5 = = 40			400		ps
Part-to-part skew (see Note 9)	CL = 5 pF, See Figure 10				1.5	ns
Output signal rise time			8.0	1.4	2	ns
Output signal fall time		8.0	1.5	2	ns	
Propagation delay time, low-to-high-level output		3.4	5.8	9	ns	
Propagation delay time, high-to-low-level output		3.4	5.4	9	ns	
Pulse skew (tpHL tpLH)	0 45 50 5 40		400		ps	
Part-to-part skew (see Note 9)	CL = 15 pF, See Figure 10			2.5	ns	
Output signal rise time		1	2	2.6	ns	
Output signal fall time		1	1.4	2.6	ns	
Propagation delay time, high-level-to-high-impedance output		4.5	6	15	ns	
Propagation delay time, low-level-to-high-impedance output		2	3.4	5	ns	
Propagation delay time, high-impedance-to-high-level output	1 See Figure 11	3.5	9.8	15	ns	
Propagation delay time, high-impedance-to-low-level output		4	8.7	15	ns	
Period jitter, rms (1 standard deviation)	50-MHz clock input	Type 1		10		
(see Notes 10 and 11)	(see Figure 12)	Type 2		10		ps
	50-MHz clock input	Type 1		93		
Cycle-to-cycle jitter, peak (see Notes 10 and 11)	(see Figure 12)	Type 2		86		ps
	100 Mbps 2 ¹⁵ –1 PRBS	Type 1		850		
Peak-to-peak jitter, (see Notes 10, 12, and 13)				790		ps
	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal fall time Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal rise time Output signal fall time Propagation delay time, high-level-to-high-impedance output Propagation delay time, low-level-to-high-impedance output Propagation delay time, high-impedance-to-high-level output Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-impedance-to-low-level output	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL — tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal fall time Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL — tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal rise time Output signal rise time Output signal rise time Output signal fall time Propagation delay time, high-level-to-high-impedance output Propagation delay time, low-level-to-high-impedance output Propagation delay time, high-impedance-to-high-level output Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-impedance-to-low-lev	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL — tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal fall time Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL — tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal rise time Output signal rise time Output signal rise time Output signal fall time Propagation delay time, high-level-to-high-impedance output Propagation delay time, high-level-to-high-impedance output Propagation delay time, high-impedance-to-high-level output Propagation delay time, high-impedance-to-low-level output Propagation delay time, high-	Propagation delay time, low-to-high-level output Propagation delay time, high-to-low-level output Pulse skew (tpHL tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal fall time Propagation delay time, low-to-high-level output Pulse skew (tpHL tpLH) Part-to-part skew (see Note 9) Output signal fall time Propagation delay time, high-to-low-level output Pulse skew (tpHL tpLH) Part-to-part skew (see Note 9) Output signal rise time Output signal rise time Output signal fall time Propagation delay time, high-level-to-high-impedance output Propagation delay time, low-level-to-high-impedance output Propagation delay time, high-impedance-to-high-level output Propagation delay time, high-impedance-to-low-level	Propagation delay time, low-to-high-level output 3 5 Propagation delay time, high-to-low-level output 400 Pulse skew (ltpHL — tpLHl) 0.8 1.4 Pulse skew (see Note 9) 0.8 1.5 Output signal rise time 0.8 1.5 Propagation delay time, low-to-high-level output 0.8 1.5 Propagation delay time, high-to-low-level output 0.8 1.5 Pulse skew (ltpHL — tpLHl) 3.4 5.4 Part-to-part skew (see Note 9) 1 2 Output signal rise time 1 2 Output signal fall time 1 2 Propagation delay time, high-level-to-high-impedance output 2 3.4 Propagation delay time, high-level-to-high-impedance output 2 3.4 Propagation delay time, high-impedance-to-high-level output 3.5 9.8 Propagation delay time, high-impedance-to-low-level output 3.5 9.8 Propagation delay time, high-impedance-to-low-level output 3.5 9.8 Propagation delay time, high-impedance-to-low-level output 3.5 9.8 Period jitter, rms (1 standard deviation) (see Notes 10 and 11) 50-MHz clock input (see Figure 12) Type 1 93 Cycle-to-cycle jitter, peak (see Notes 10 and 11) 100 Mbps 2 ¹⁵ -1 PRBS input (Propagation delay time, low-to-high-level output 3 5 6.7 Propagation delay time, high-to-low-level output 400 Pulse skew (ltpHL — tpLH) 400 Part-to-part skew (see Note 9) 5.5 Output signal rise time 0.8 1.4 2 Output signal fall time 8.8 1.5 2 Propagation delay time, low-to-high-level output 3.4 5.4 9 Pulse skew (ltpHL — tpLH) 400 Part-to-part skew (see Note 9) 3.4 5.4 9 Output signal rise time 1 2 2.5 Output signal rise time 1 1 2 2.6 Output signal rise time 1 1 2 2.6 Output signal fall time 1 1 2 2.6 Propagation delay time, high-level-to-high-impedance output 2 3.4 5.6 Propagation delay time, low-level-to-high-impedance output 2 3.4 5.6 Propagation delay time, high-impedance-to-low-level output 3.5 9.8 15 Propagation delay time, high-impedance-to-low-level output 3.5 9.8 15 Period jitter, rms (1 standard deviation) (see Notes 10 and 11) 50-MHz clock input (see Figure 12) Type 1 93 Peak-to-peak jitter, (see Notes 10, 12, and 13) 50 Mbs 215-1 PRBs input (see Figure 12) Type 1 93 <tr< td=""></tr<>

[†] All typical values are at 25°C and with a 3.3-V supply voltage.

NOTES: 9. t_{sk(pp)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.

- 10. Jitter parameters are based on design and characterization. Stimulus system jitter of 11 ps t_{jit(per)}, 43 ps t_{jit(cc)}, or 54 ps t_{jit(pp)} have been subtracted from the values.
- 11. Differential input voltage = 250 mV_{p-p} (Type 1) or 500 mV_{p-p} (Type 2), $V_{CM} = 1 \text{ V}$, $t_r = t_f \le 1 \text{ ns}$ (20% to 80%), measured over 30k samples.
- 12. Differential input voltage = 250 mV_{p-p} (Type 1) or 500 mV_{p-p} (Type 2), $V_{CM} = 1 \text{ V}$, $t_r = t_f \le 1 \text{ ns}$ (20% to 80%), measured over 100k samples
- 13. Peak-to-peak jitter includes jitter due to pulse skew (t_{sk(p)}).

PARAMETER MEASUREMENT INFORMATION

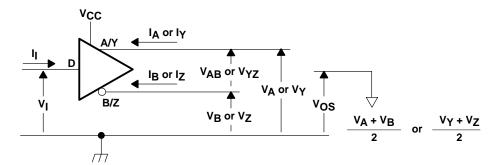
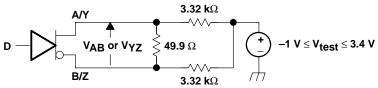
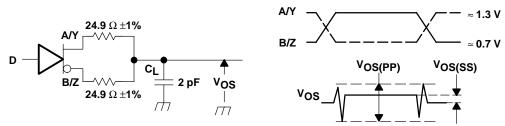




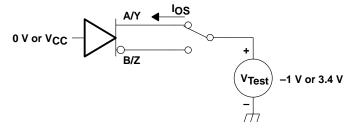
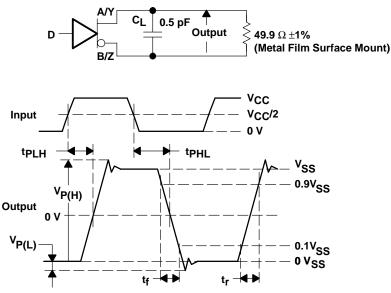
Figure 1. Driver Voltage and Current Definitions

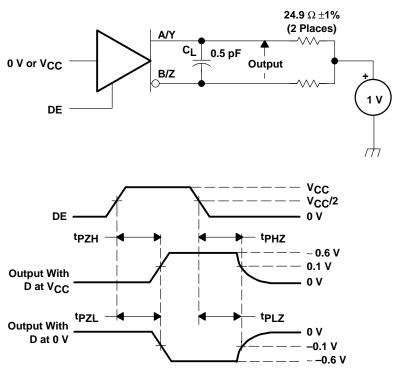
NOTE: All resistors are 1% tolerance.

Figure 2. Differential Output Voltage Test Circuit

NOTE: All input pulses are supplied by a generator having the following characteristics: t_T or $t_{\bar{f}} \le 1$ ns, pulse repetition rate (PRR) = 0.25 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of $V_{OS(PP)}$ is made on test equipment with a -3-dB bandwidth of at least 1 GHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage


Figure 4. Driver Short-Circuit Test Circuit

PARAMETER MEASUREMENT INFORMATION

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, pulse repetition rate (PRR) = 1 Mpps, pulse width = 0.5 $\pm 0.05 \,\mu s$. C_{L} includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, pulse repetition rate (PRR) = 0.25 Mpps, pulse width = 500 ±10 ns. C_{L} includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

Figure 6. Driver Enable and DIsable Time Circuit and Definitions

PARAMETER MEASUREMENT INFORMATION

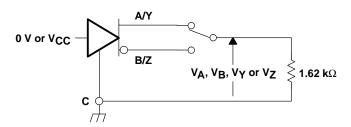
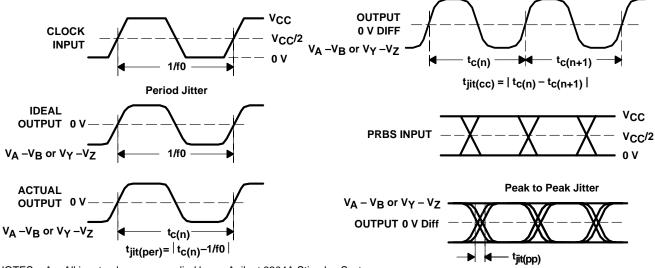



Figure 7. Maximum Steady-State Output Voltage Test Circuit

- NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.
 - B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
 - C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input.
 - D. Peak-to-peak jitter is measured using a 200Mbps 2¹⁵–1 PRBS input.

Figure 8. Driver Jitter Measurement Waveforms

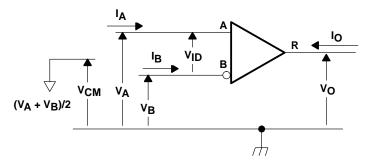


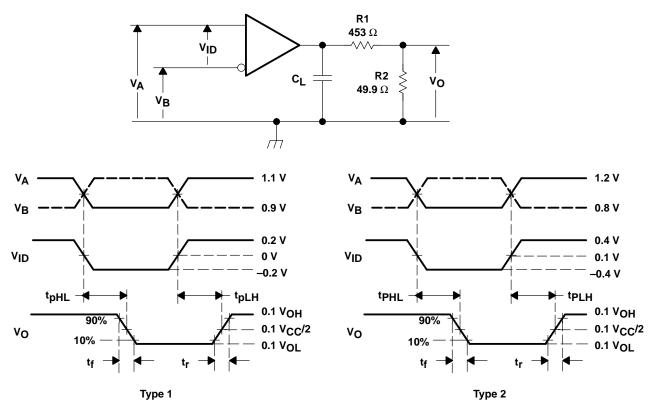
Figure 9. Receiver Voltage and Current Definitions

PARAMETER MEASUREMENT INFORMATION

Table 1. Type-1 Receiver Input Threshold Test Voltages

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER OUTPUT	
٧A	٧B	V _{ID}	V _{CM}	v _O	
3.425 V	3.375 V	50 mV	3.4 V	Н	
3.375 V	3.425 V	−50 mV	3.4 V	L	
-0.975 V	-1.025 V	50 mV	−1.0 V	Н	
-1.025 V	–0.975 V	−50 mV	-1.0 V	L	
3.800 V	3.000 V	800 mV	3.4 V	Н	
3.000 V	3.800 V	−800 mV	3.4 V	L	
-0.600 V	-1.400 V	800 mV	-1.0 V	Н	
-1.400 V	-0.600 V	−800 mV	-1.0 V	L	

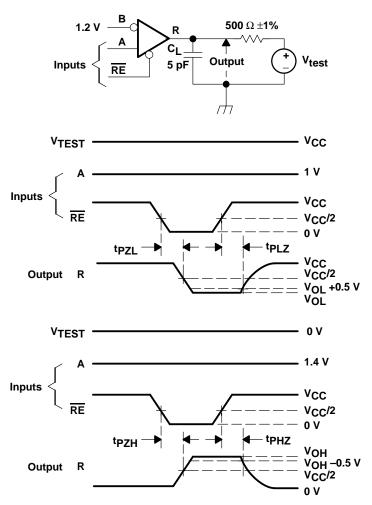
NOTE: H= high level, L = low level. Output state assumes receiver is enabled (\overline{RE} is Low).


Table 2. Type-2 Receiver Input Threshold Test Voltages

APPLIED VOLTAGES		RESULTING DIFFERENTIAL INPUT VOLTAGE	RESULTING COMMON- MODE INPUT VOLTAGE	RECEIVER OUTPUT	
٧A	٧ _B	V_{ID}	V _{CM}	v _o	
3.475 V	3.325 V	150 mV	3.4 V	Н	
3.425 V	3.375 V	50 mV	3.4 V	L	
-0.925 V	–1.075 V	150 mV	-1.0 V	Н	
-0.975 V	–1.025 V	50 mV	-1.0 V	L	
3.800 V	3.000 V	800 mV	3.4 V	Н	
3.000 V	3.800 V	−800 mV	3.4 V	L	
-0.600 V	-1.400 V	800 mV	−1.0 V	Н	
-1.400 V	-0.600 V	−800 mV	-1.0 V	L	

NOTE: H= high level, L = low level. Output state assumes receiver is enabled (\overline{RE} is Low).

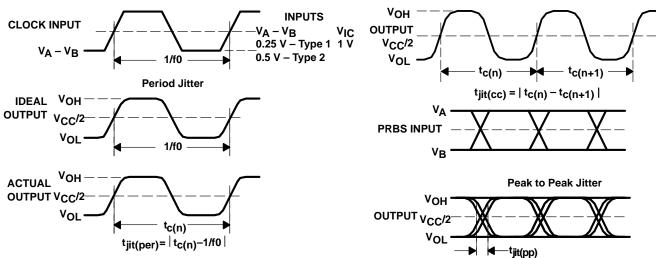
PARAMETER MEASUREMENT INFORMATION



NOTES: A. All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 1 Mpps, pulse width = $0.5 \pm 0.05 \,\mu s$.

- B. Resistors are 1% tolerance, metal film, and surface mount.
- C. C_L is 20% tolerance, low-loss ceramic, and surface mount.
- D. R1 and C_L are located within 2 cm of the D.U.T.
- E. R2 is located within 15 cm of the D.U.T.

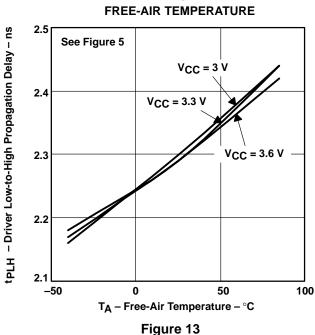
Figure 10. Receiver Timing Test Circuit and Waveforms


PARAMETER MEASUREMENT INFORMATION

NOTE: All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{\Gamma} \le 1$ ns, pulse repetition rate (PRR) = 0.25 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms

PARAMETER MEASUREMENT INFORMATION



NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.

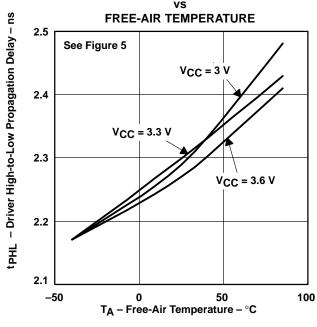
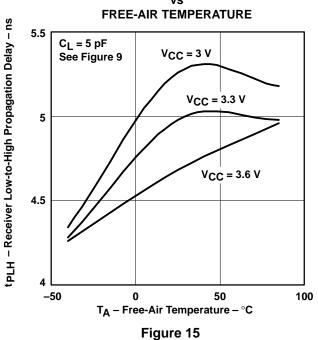

- B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software
- C. Period jitter is measured using a 100 MHz 50 \pm 1% duty cycle clock input.
- D. Peak-to-peak jitter is measured using a 200Mbps 2¹⁵–1 PRBS input.

Figure 12. Receiver Jitter Measurement Waveforms

DRIVER LOW-TO-HIGH PROPAGATION DELAY vs



DRIVER HIGH-TO-LOW PROPAGATION DELAY

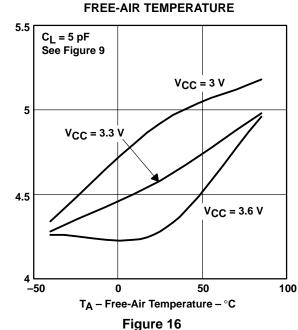
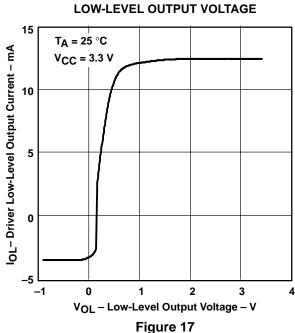
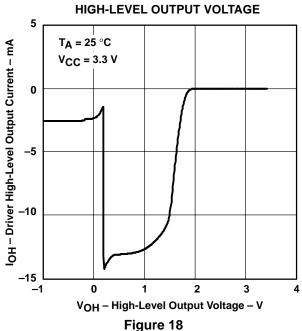


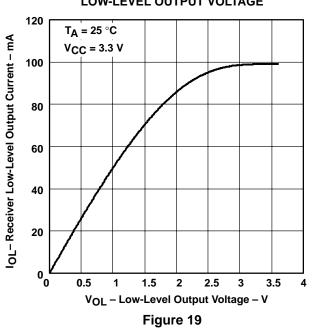
Figure 14

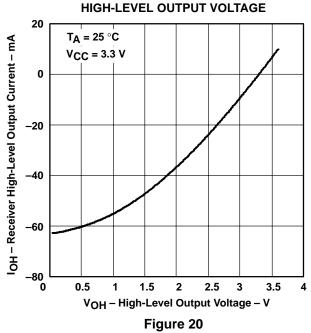
RECEIVER LOW-TO-HIGH PROPAGATION DELAY

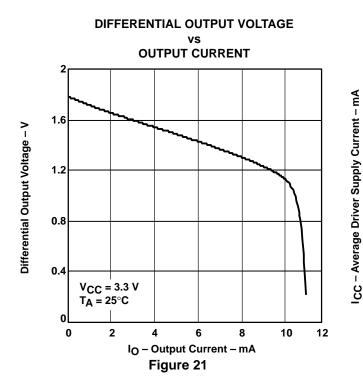

RECEIVER HIGH-TO-LOW PROPAGATION DELAY vs

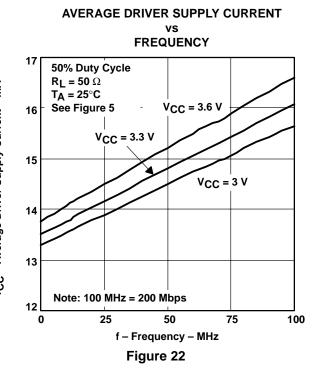


tpHL - Receiver High-to-Low Propagation Delay - ns


DRIVER LOW-LEVEL OUTPUT CURRENT vs


DRIVER HIGH-LEVEL OUTPUT CURRENT vs



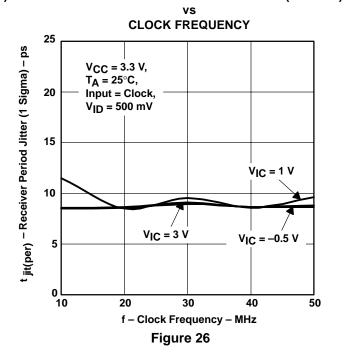

RECEIVER LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE

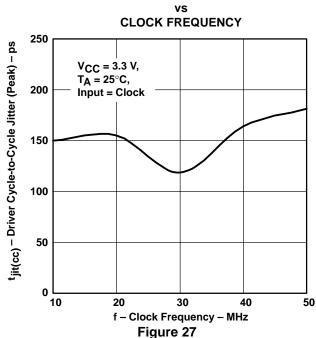
RECEIVER HIGH-LEVEL OUTPUT CURRENT vs

FREQUENCY 20 50% Duty Cycle ICC - Average Receiver Supply Current - mA $R_L = 500 \Omega$ $C_L = 5 pF$ $T_{A} = 25^{\circ}C$ 15 $V_{CC} = 3.6 V$ See Figure 9 $V_{CC} = 3.3 V$ 10 **VCC = 3 V** Note: 100 MHz = 200 Mbps 0 25 50 100

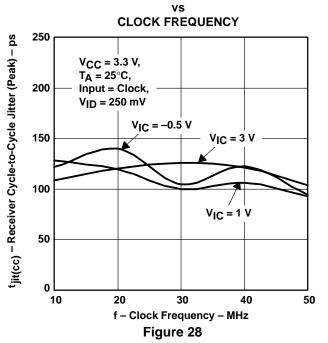
f – Frequency – MHz Figure 23

AVERAGE RECEIVER SUPPLY CURRENT

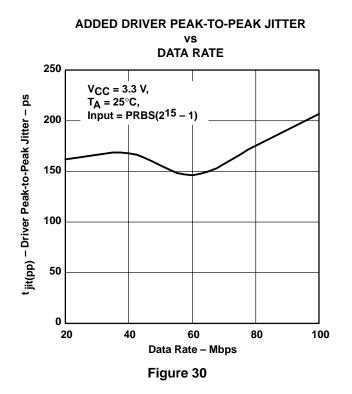

٧S


ADDED TYPE 1 RECEIVER PERIOD JITTER (1 SIGMA)

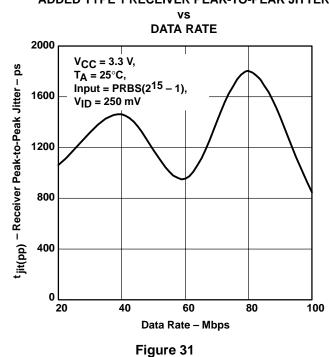
CLOCK FREQUENCY 25 t jit(per) - Receiver Period Jitter (1 Sigma) - ps $V_{CC} = 3.3 V,$ $T_A = 25^{\circ}C$ Input = Clock, 20 $V_{ID} = 250 \text{ mV}$ $V_{IC} = -0.5 V$ **VIC = 3 V** 15 10 V_{IC} = 1 V 5 10 30 40 50 f - Clock Frequency - MHz Figure 25


ADDED TYPE 2 RECEIVER PERIOD JITTER (1 SIGMA)

ADDED DRIVER CYCLE-TO-CYCLE JITTER (PEAK)



ADDED TYPE 1 RECEIVER CYCLE-TO-CYCLE JITTER (PEAK)



ADDED TYPE 2 RECEIVER CYCLE-TO-CYCLE JITTER (PEAK) vs **CLOCK FREQUENCY** 250 tjit(cc) – Receiver Cycle-to-Cycle Jitter (Peak) – ps $V_{CC} = 3.3 V$ $T_A = 25^{\circ}C$ 200 Input = Clock, $V_{ID} = 500 \text{ mV}$ 150 V_{IC} = -0.5 V V_{IC} = 1 V 100 $V_{IC} = 3 V$ 50 10 30 50 f - Clock Frequency - MHz

ADDED TYPE 1 RECEIVER PEAK-TO-PEAK JITTER

Figure 29

ADDED TYPE 2 RECEIVER PEAK-TO-PEAK JITTER vs

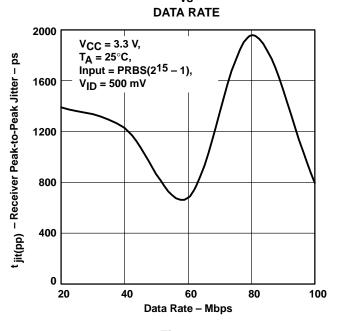


Figure 32

APPLICATION INFORMATION

Type-1 and Type-2 receivers

The M-LVDS standard defines Type-1 and Type-2 receivers. Type-1 receivers include no provisions for failsafe and have their differential input voltage thresholds near zero volts. Type-2 receivers have their differential input voltage thresholds offset from zero volts to detect the absence of a voltage difference. Type-1 receivers maximize the differential noise margin and are intended for maximum signaling rates. Type-2 receivers are intended for control signals and slower signaling rates. The impact on receiver output by the offset input can be seen in Table 3 and Figure 33.

Table 3. M-LVDS Receiver Input Voltage Threshold Requirements

Receiver Type	Output Low	Output High
1	$-2.4 \text{ V} \le \text{V}_{1D} \le -0.05 \text{ V}$	$0.05 \text{ V} \le \text{V}_{1D} \le 2.4 \text{ V}$
2	$-2.4 \text{ V} \le \text{V}_{1D} \le 0.05 \text{ V}$	$0.15 \text{ V} \le \text{V}_{1D} \le 2.4 \text{ V}$

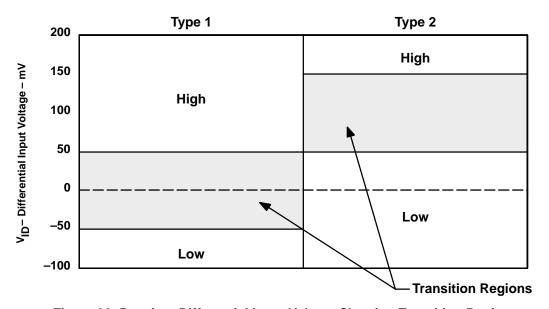


Figure 33. Receiver Differential Input Voltage Showing Transition Region

APPLICATION INFORMATION

comparison of M-LVDS with RS-485

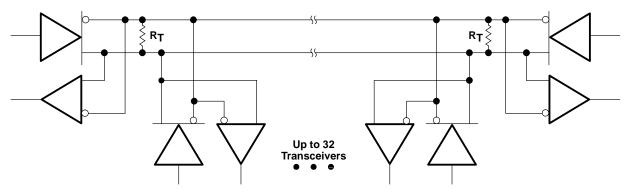

RS-485 applications are similar to M-LVDS. The two standards define balanced multipoint systems with some basic architecture changes due to the different applications. Table 4 gives a high-level comparison of the two different technologies.

Table 4. Comparison Between M-LVDS and RS-485 Standards

	Number of Loads	Differential Voltage Range	Common-Mode Voltage Range	Maximum Signaling Rate (Mbps)	Receiver Minimum Threshold	
RS-485	32	1.5 V to 5 V	–7 V to 12 V	50 Mbps	±200 mV	
M-LVDS	32	480 mV to 650 mV	–1 V to 3.4 V	500 Mbps	±50 mV	

It can be seen that with the greater differential output voltage and common-mode voltage range of the RS-485-type device, it can handle longer signaling distances where M-LVDS offers ten times the signaling rate of RS-485.

SN65MLVD200 SN65MLVD200

NOTE A: The line should be terminated at both ends in its characteristic impedance (R_T = Z_O). Stub lengths off the main line should be kept as short as possible.

Figure 34. Typical Application Circuit

PACKAGE OPTION ADDENDUM

i.com 10-Feb-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65MLVD200D	NRND	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD200DG4	NRND	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD200DR	NRND	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD200DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD202D	NRND	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
SN65MLVD202DR	NRND	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
SN65MLVD202DRG4	NRND	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
SN65MLVD204D	NRND	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD204DR	NRND	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD204DRG4	NRND	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65MLVD205D	NRND	SOIC	D	14	50	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
SN65MLVD205DR	NRND	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM
SN65MLVD205DRG4	NRND	SOIC	D	14	2500	Green (RoHS & no Sb/Br)	CU NIPD	Level-1-260C-UNLIM

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

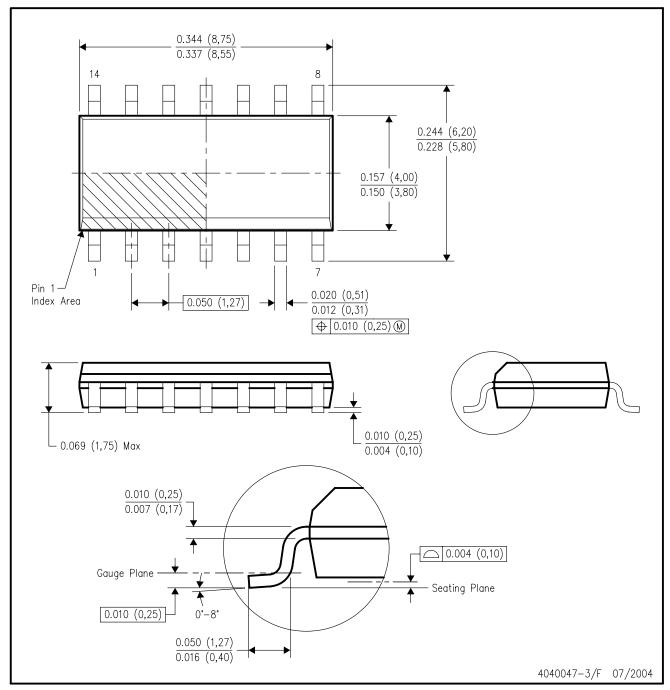
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on

PACKAGE OPTION ADDENDUM

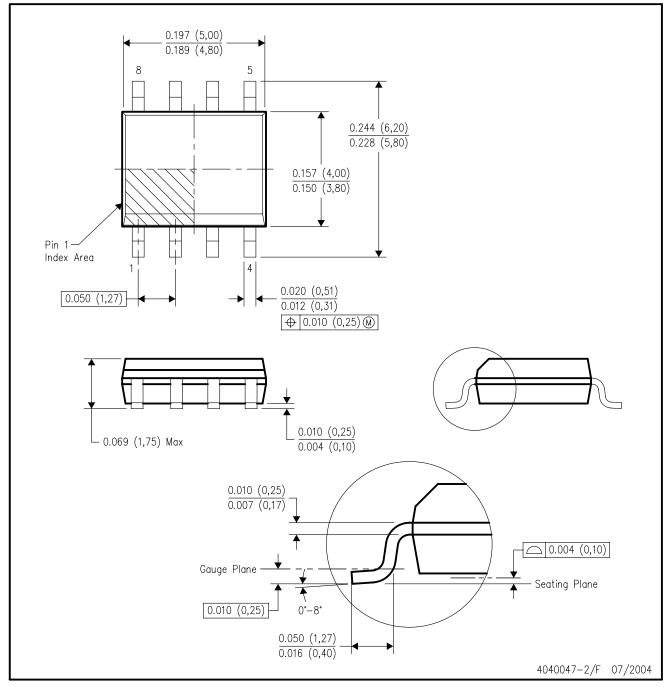

10-Feb-2006

incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G14)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

D (R-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AA.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated