

MULTILAYER CERAMIC CHIP CAPACITORS

C Series Tight Tolerance Capacitors

Type:

C1005 [EIA CC0402] C1608 [EIA CC0603]

Issue date: April 2011

TDK MLCC US Catalog

Version B11

REMINDERS

Please read before using this product

SAFETY REMINDERS

REMINDERS

- 1. If you intend to use a product listed in this catalog for a purpose that may cause loss of life or other damage, you must contact our company's sales window.
- 2. We may modify products or discontinue production of a product listed in this catalog without prior notification.
- 3. We provide "Delivery Specification" that explain precautions for the specifications and safety of each product listed in this catalog. We strongly recommend that you exchange these delivery specifications with customers that use one of these products.
- 4. If you plan to export a product listed in this catalog, keep in mind that it may be a restricted item according to the "Foreign Exchange and Foreign Trade Control Law". In such cases, it is necessary to acquire export permission in harmony with this law.
- 5. Any reproduction or transferring of the contents of this catalog is prohibited without prior permission from our company.
- 6. We are not responsible for problems that occur related to the intellectual property rights or other rights of our company or a third party when you use a product listed in this catalog. We do not grant license of these rights.
- 7. This catalog only applies to products purchased through our company or one of our company's official agencies. This catalog does not apply to products that are purchased through other third parties.

C Series

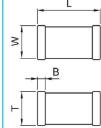
Tight Tolerance Capacitors

Type: C1005, C1608

Available Through Distribution Only*

eatures

- Available in 1% and 2% capacitance tolerance
- Suitable for high frequency applications
- A monolithic structure ensures superior mechanical strength and reliability
- High-accuracy automatic mounting is facilitated through the maintenance of very precise dimensional tolerances
- Composed of only ceramics and metals, these capacitors provide extremely dependable performance, exhibiting virtually no degradation even when subjected to temperature extremes
- · Low stray capacitance ensures high conformity with nominal values, thereby simplifying the circuit design process
- · Low residual inductance assures superior frequency characteristics
- · Owing to their low ESR and excellent frequency characteristics, these products are optimally suited for high frequency and high-density type power supplies


Applications

- · Electronics equipment
- Mobile communications equipment
- · LTE/WiMAX base stations
- High frequency RF modules
- Test and measurement equipment
- Matching/Coupling circuits
- **Tuning circuits**

Shape & **Dimensions**

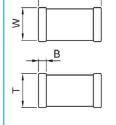
Dimensions in mm

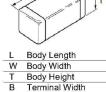
Internal Codes

Packaging Style

G

Packaging Code


Part Number Construction


C 1608 COG 2A **Series Name** Dimensions L x W (mm) Case Code Length Width C1005 1.00 ± 0.05 0.50 ± 0.05 1.60 ± 0.10 C1608 0.80 ± 0.10 **Temperature Characteristic** Temperature Capacitance Temperature Characteristics Change Range COG 0±30 ppm/°C -55 to +125°C Rated Voltage (DC) Voltage Code Voltage (DC) 1H 50V 100V 2A

Nominal Capacitance (pF)

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

Capacitance Code	Capacitance
0R5	0.5pF
010	1pF
102	1,000pF (1nF)
105	1,000,000pF (1µF)

Tape & Reel Capacitance Tolerance **Tolerance Code** Tolerance ± 1%

Style

± 2%

This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

C1005 [EIA CC0402]

Capacitance Range Chart

Temperature Characteristics: C0G (0 ± 30ppm/°C)

Rated Voltage: 50V(1H)

Conseitense	0	Tomorotono	Tolerance		
Capacitance (pF)	Cap	Temperature Characteristics	F (±1%)	G (±2%)	
15	150	-55 to 125°C,			
22	220	0±30 ppm/ºC			
33	330	grand			
47	470				
68	680				
100	101				
150	151				
220	221				
330	331				
470	471				
680	681				
1,000	102	9			

Standard Thickness
0.50 mm

C1005 [EIA CC0402]

Class 1 (Temperature Compensating)

Temperature Characteristics: COG (-55 to 125°C, 0±30 ppm/°C)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C1005C0G1H150F	COG	50V	15	± 1%	0.50 ± 0.05
C1005C0G1H150G	COG	50V	15	± 2%	0.50 ± 0.05
C1005C0G1H220F	COG	50V	22	± 1%	0.50 ± 0.05
C1005C0G1H220G	C0G	50V	22	± 2%	0.50 ± 0.05
C1005C0G1H330F	COG	50V	33	± 1%	0.50 ± 0.05
C1005C0G1H330G	C0G	50V	33	± 2%	0.50 ± 0.05
C1005C0G1H470F	COG	50V	47	± 1%	0.50 ± 0.05
C1005C0G1H470G	COG	50V	47	± 2%	0.50 ± 0.05
C1005C0G1H680F	COG	50V	68	± 1%	0.50 ± 0.05
C1005C0G1H680G	C0G	50V	68	± 2%	0.50 ± 0.05
C1005C0G1H101F	COG	50V	100	± 1%	0.50 ± 0.05
C1005C0G1H101G	COG	50V	100	± 2%	0.50 ± 0.05
C1005C0G1H151F	COG	50V	150	± 1%	0.50 ± 0.05
C1005C0G1H151G	COG	50V	150	± 2%	0.50 ± 0.05
C1005C0G1H221F	COG	50V	220	± 1%	0.50 ± 0.05
C1005C0G1H221G	COG	50V	220	± 2%	0.50 ± 0.05
C1005C0G1H331F	C0G	50V	330	± 1%	0.50 ± 0.05
C1005C0G1H331G	COG	50V	330	± 2%	0.50 ± 0.05
C1005C0G1H471F	COG	50V	470	± 1%	0.50 ± 0.05
C1005C0G1H471G	COG	50V	470	± 2%	0.50 ± 0.05
C1005C0G1H681F	COG	50V	680	± 1%	0.50 ± 0.05
C1005C0G1H681G	COG	50V	680	± 2%	0.50 ± 0.05
C1005C0G1H102F	COG	50V	1,000	± 1%	0.50 ± 0.05
C1005C0G1H102G	COG	50V	1,000	± 2%	0.50 ± 0.05

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

MULTILAYER CERAMIC CHIP CAPACITORS

C1608 [EIA CC0603]

Capacitance Range Chart

Temperature Characteristics: C0G (0 ± 30ppm/°C)

Rated Voltage: 100V (2A), 50V(1H)

Capacitance (pF)		Tamparatura	10	OV	50	V	
		Temperature Characteristics	F (±1%)	G (±2%)	F (±1%)	G (±2%)	
15	150	-55 to 125°C,					
22	220	0±30 ppm/ºC					
33	330	į į					
47	470						
68	680						
100	101						
150	151						
220	221						
330	331						
470	471						Standard Thickne
680	681						-
1,000	102						0.80 mr

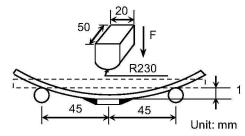
^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

C1608 [EIA CC0603]

Class 1 (Temperature Compensating)

Temperature Characteristics: COG (-55 to 125°C, 0±30 ppm/°C)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C1608C0G1H150F	COG	50V	15	± 1%	0.80 ± 0.10
C1608C0G1H150G	COG	50V	15	± 2%	0.80 ± 0.10
C1608C0G1H220F	COG	50V	22	± 1%	0.80 ± 0.10
C1608C0G1H220G	COG	50V	22	± 2%	0.80 ± 0.10
C1608C0G1H330F	COG	50V	33	± 1%	0.80 ± 0.10
C1608C0G1H330G	COG	50V	33	± 2%	0.80 ± 0.10
C1608C0G1H470F	COG	50V	47	± 1%	0.80 ± 0.10
C1608C0G1H470G	COG	50V	47	± 2%	0.80 ± 0.10
C1608C0G1H680F	COG	50V	68	± 1%	0.80 ± 0.10
C1608C0G1H680G	COG	50V	68	± 2%	0.80 ± 0.10
C1608C0G1H101F	COG	50V	100	± 1%	0.80 ± 0.10
C1608C0G1H101G	COG	50V	100	± 2%	0.80 ± 0.10
C1608C0G1H151F	COG	50V	150	± 1%	0.80 ± 0.10
C1608C0G1H151G	COG	50V	150	± 2%	0.80 ± 0.10
C1608C0G1H221F	COG	50V	220	± 1%	0.80 ± 0.10
C1608C0G1H221G	COG	50V	220	± 2%	0.80 ± 0.10
C1608C0G1H331F	COG	50V	330	± 1%	0.80 ± 0.10
C1608C0G1H331G	COG	50V	330	± 2%	0.80 ± 0.10
C1608C0G1H471F	COG	50V	470	± 1%	0.80 ± 0.10
C1608C0G1H471G	COG	50V	470	± 2%	0.80 ± 0.10
C1608C0G1H681F	COG	50V	680	± 1%	0.80 ± 0.10
C1608C0G1H681G	COG	50V	680	± 2%	0.80 ± 0.10
C1608C0G1H102F	COG	50V	1,000	± 1%	0.80 ± 0.10
C1608C0G1H102G	COG	50V	1,000	± 2%	0.80 ± 0.10
C1608C0G2A101F	COG	100V	100	± 1%	0.80 ± 0.10
C1608C0G2A101G	COG	100V	100	± 2%	0.80 ± 0.10
C1608C0G2A102F	COG	100V	1,000	± 1%	0.80 ± 0.10
C1608C0G2A102G	COG	100V	1,000	± 2%	0.80 ± 0.10


^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

No.	 Item	Performance		Test or Inspection Method				
1	External Appearance	No defects which r	may affect		Inspect with magnifying glass (3 $ imes$).			
2	Insulation Resistance	10,000M Ω min.		Apply rate	ed voltage for 6	0s.		
3	Voltage Proof	Withstand test volt insulation breakdo			ge be applied for 1 to			
4	Capacitance	Within the specifie	Class	Rated Capacitance	Measuring Frequency	Measuring voltage		
			Class 1	1000pF and under Over 1000pF	1MHz±10%	0.5 - 5 V _{rms}		
5	Q (Class 1)	Rated Capacitance C ≥ 30pF C < 30pF C:	C ≥ 30pF 1,000 min.			measuring cond	dition.	
6	Temperature Characteristics of Capacitance (Class 1)	T.C. Temperature $C0G = 0 \pm 30 \text{ ppm/}^{6}$ Capacitance drift Within $\pm 0.2\%$ or larger.		values at	25°C and 85°C	shall be calculat temperature. pelow 20°C shall		
7	Robustness of Terminations	No sign of termination coming off, breakage of ceramic, or other abnormal signs.		Reflow solder the capacitor on P.C. board (shown in Appendix 1) and apply a pushing force of 2N (C1005) or 5N (C1608) for 10±1s. Pushing force P.C. board			f 2N (C1005)	
8	Bending	No mechanical dar	mage.			tor on P.C. boar		

Appendix 2a or Appendix 2b) and bend it for 1mm.

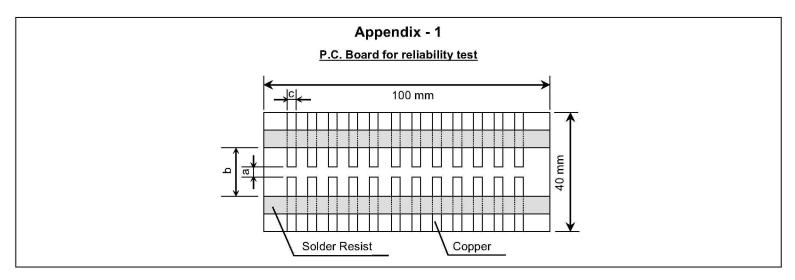
^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

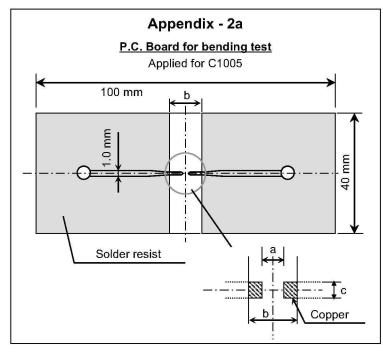
No.	Item	Performance	:		Test or Inspection Method
9	Solderability	New solder to termination.	cover	over 75% of	Completely soak both terminations in solder at 235 \pm 5°C for 2 \pm 0.5s.
		25% may have but not concen		les or rough spots	Solder: H63A (JIS Z 3282)
		Ceramic surfac	ce of A e to mo terial.	sections shall not elting or shifting of	Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.
10	Resistance to se	older heat	• А	section	Completely soak both terminations in solder at
	External appearance	No cracks are		d and terminations ast 60% with new	260±5°C for 5±1s. Preheating condition Temp.: 150±10°C
	Capacitance	Characteristic	2	ange from the ue before test	Time: 1 to 2min.
		Class 1 C0G	±2	pacitance drift within 2.5% or \pm 0.25pF, ichever larger.	Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution. Solder: H63A (JIS Z 3282)
	Q (Class 1)	Rated Capacit	d Capacitance Q		Leave the capacitor in ambient conditions for 6 to 24h
		C ≥ 30pF C < 30pF		1,000 min.	before measurement.
				400 + 20×C min.	
			C : Rated capacitance (pF)		
	Insulation Resistance	Meet the initial	spec.		_
	Voltage Proof	No insulation bother damage.	reakdo	own or	
11	Vibration				Reflow solder the capacitor on P.C. board (shown in
	External appearance	No mechanica	dama	ge.	Appendix 1) before testing. Vibrate the capacitor with amplitude of 1.5mm P-P
	Capacitance	Characteristic		ange from the ue before test	sweeping the frequencies from 10Hz to 55Hz and back to 10Hz after 1min.
		Class 1 C0G	±2	pacitance drift within 2.5% or ± 0.25 pF, ichever larger.	Repeat this for 2h each in 3 perpendicular directions.
	Q (Class 1)	Rated Capacit	ance	Q	
		C ≥ 30pF	materia 1905	1,000 min.	•
		C < 30pF		400+20 × C min.	
		C : Rated capacitance (p			

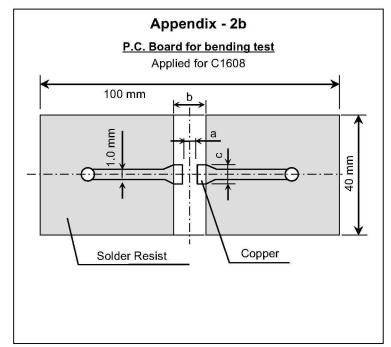
^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

No.	Item	Performance					Inspection Method		
12	Temperature cycle External appearance	No mech	anical da	ama	ge.	Reflow solder the capacitors on a P.C. board (shown in Appendix 1) before testing. Expose the capacitor in the conditions in step 1			
	Capacitance	Charact Class 1	Class 1 C0G Cap		lange from the lue before test spacitance drift within 2.5% or ±0.25pF,	Leave th	step 4, and repeat 5 times one capacitor in ambient concreasurement.	•	
					ichever larger.	Step	Temperature (°C)	Time (min.)	
					-	1	Min. operating temp. ± 3	30 ± 3	
	Q (Class 1)	Rated C	apacitan	ce	Q	2	Reference Temp.	2 – 5	
		C ≥ 30pl	F		1,000 min.	3	Max. operating temp. \pm 2	30 ± 2	
		C < 30pl	F		400 + 20×C min.	4	Reference Temp.	2 - 5	
			С	: Ra	ated capacitance (pF)	<u> </u>	<u>j</u>		
	Insulation Resistance Voltage Proof	Meet the No insula damage.	ation brea		own or other				
13	Moisture Resistan	ce (Steady	/ State)			Reflows	solder the capacitor on P.C.	board (shown in	
	External appearance	No mech	•	ama	ge.	Appendix 1) before testing. Leave at temperature 40±2°C, 90 to 95%RH for 500+24,0h. Leave the capacitor in ambient condition for 6 to 24h			
	Capacitance	Charact	eristics		nange from the lue before test				
		Class 1	C0G	土.	pacitance drift within 5% or ± 0.5 pF, ichever larger.	ретоге п	neasurement.		
	Q (Class 1)	Rated Ca	pacitanc	e	Q				
	, ,	C ≥ 30pF			350 min.	,			
			10pF ≤ C < 30pF		275 + 5/2×C min.	-			
		C < 10pF			200 + 10×C min.	-			
				: Rated capacitance (pF)					
	Insulation Resistance	1,000ΜΩ			, , , , , , , , , , , , , , , , , , ,				

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.



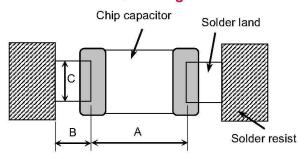

No.	Item	Performa	ance		Test or Inspection Method	
14	Moisture Resist	ance			Reflow solder the capacitors on P.C. board (shown in Appendix 1) before testing.	
	External	No mecha	nical dar	nage.		
	appearance				Apply the rated voltage at temperature $40\pm2^{\circ}\text{C}$ and 90 to $95\%\text{RH}$ for $500\pm24,0\text{h}$.	
	Capacitance	Character	rietice	Change from the value before test	Charge/discharge current shall not exceed 50mA.	
		Class 1		Capacitance drift within \pm 7.5% or \pm 0.75pF, whichever larger.	Leave the capacitor in ambient conditions for 6 to 24h before measurement.	
	O (Class 1)				Use this measurement for initial value.	
	Q (Class 1)	Rated Cap	pacitance			
		C ≥ 30pF		200 min.		
		C < 30pF		100 + 10/3×C min.		
			C :	Rated capacitance (pF)	_	
	Insulation Resistance	500MΩ mi	in.			
15	Life				Reflow solder the capacitor on P.C. board (shown in	
	External	No mechanical damage.			Appendix 1) before testing.	
	appearance			O	Apply 2x rated voltage at $125\pm2^{\circ}$ C for 1,000 +48, 0h.	
	Capacitance	Character	cteristics Change from the value before test		Charge/discharge current shall not exceed 50mA.	
		Class 1		Capacitance drift within	Leave the capacitors in ambient condition for 6 to 24h before measurement.	
				\pm 3% or \pm 0.3pF,		
				whichever larger.	Use this measurement for initial value.	
	Q (Class 1)	Rated Cap	pacitance	Q	7	
	,	C ≥ 30pF		350 min.		
		10pF ≤ C <	< 30pF	275 + 5/2×C min.		
		C < 10pF		200 + 10×C min.		
		8-	C :	Rated capacitance (pF)		
	Insulation Resistance	1,000MΩ r	min.		_	


^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

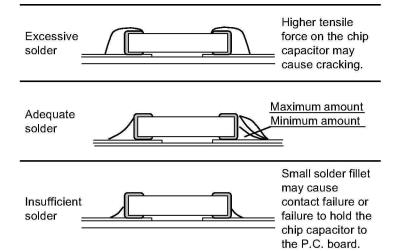
Material: Glass Epoxy (As per JIS C6484 GE4)

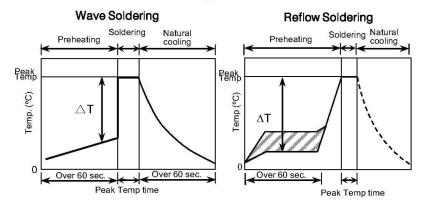
P.C. Board thickness: Appendix-2a 0.8mm
Appendix-1, 2b 1.6mm

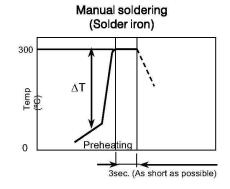
Copper (thickness 0.035mm)
Solder resist


Case	Code	Di	mensions (m	m)
JIS	EIA	а	b	С
C1005	CC0402	0.4	1.5	0.5
C1608	CC0603	1.0	3.0	1.2

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.


Recommended Soldering Land Pattern


Wave Soldering	Unit: mm		
Туре	C1608		
Symbol	[CC0603]		
Α	0.7 - 1.0		
В	0.8 - 1.0		
С	0.6 - 0.8		


Reflow Soldering Unit: mm C1005 C1608 Type Symbol [CC0402] [CC0603] 0.3 - 0.50.6 - 0.8 Α В 0.35 - 0.450.6 - 0.8С 0.4 - 0.60.6 - 0.8

Recommended Solder Amount

Recommended Soldering Profile

Recommended soldering duration

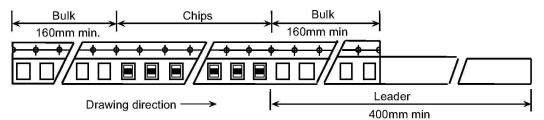
Temp./	Wave S	oldering	Reflow Soldering		
Dura. Solder	Peak temp (°C)	Duration (sec.)	Peak temp (°C)	Duration (sec.)	
Sn-Pb Solder	250 max.	3 max.	230 max.	20 max.	
Lead-Free Solder	260 max.	5 max.	260 max.	10 max.	

Recommended solder compositions

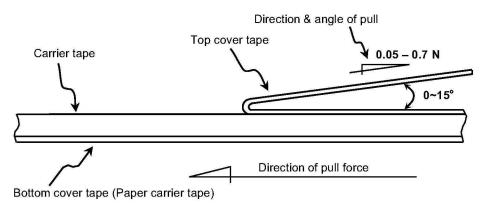
Sn-37Pb (Sn-Pb solder)

Sn-3.0Ag-0.5Cu (Lead Free Solder)

Preheating Condition

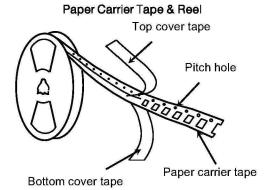

Soldering	Case Size - JIS (EIA)	Temp. (°C)
Wave soldering	C1608(CC0603)	∆T ≤ 150
Reflow soldering	C1005(CC0402), C1608(CC0603)	∆T ≤ 150
Manual soldering	C1005(CC0402), C1608(CC0603)	ΔT ≤ 150

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.



Carrier Tape Configuration

Peel Back Force (Top Tape)

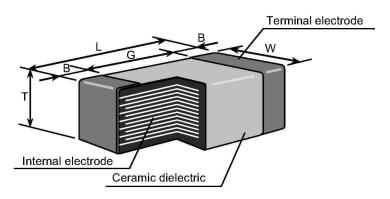

wound around a minimum radius of 30mm with components in tape.

• The missing of components shall be less than

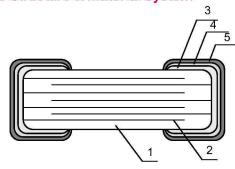
· Carrier tape shall be flexible enough to be

- The missing of components shall be less than 0.1%
- · Components shall not stick to the cover tape.
- The cover tape shall not protrude beyond the edges of the carrier tape and shall not cover the sprocket holes.

Chip Quantity Per Reel and Structure of Reel


Case	Code	Chip	Taping	Chip quar	antity (pcs.)	
JIS	EIA			φ178mm (7") reel	φ330mm (13") reel	
C1005	CC0402	0.50	D	10,000	50,000	
C1608	CC0603	0.80	Paper	4,000	10,000	

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.



Shape & Dimensions

Case	Case Code		Dir	nensions	ensions (mm)		
JIS	EIA	L	W	T	В	G	
C1005	CC0402	1.00	0.50	0.50	0.25	0.35 min.	
C1608	CC0603	1.60	0.80	0.80	0.20 min.	0.50 min.	

Inside Structure & Material System

No.	NAME	MATERIAL	
		Class 1	
(1)	Ceramic Dielectric	CaZrO ₃	
(2)	Internal Electrode	Nickel (Ni)	
(3)		Copper (Cu)	
(4)	Termination	Nickel (Ni)	
(5)		Tin (Sn)	

Environmental Information

TDK Corporation established internal product environmental assurance standards that include the six hazardous substances banned by the EU RoHS Directive¹ enforced on July 1, 2006 along with additional substances independently banned by TDK and has successfully completed making general purpose electronic components conform to the RoHS Directive².

- 1. Abbreviation for Restriction on Hazardous Substances, which refers to the regulation EU Directive 2002/95/EC on hazardous substances by the European Union (EU) effective from July 1, 2006. The Directive bans the use of six specific hazardous substances in electric and electronic devices and products handled within the EU. The six substances are lead, mercury, cadmium, hexavalent chromium, PBB (polybrominated biphenyls), and PBDE (polybrominated diphenyl ethers).
- This means that, in conformity with the EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- For REACH (SVHC: 15 substances according to ECHA / October 2008): All TDK MLCC do not contain these 15 substances.
- For European Directive 2000/53/CE and 2005/673/CE:
 Cadmium, Hexavalent Chromium, Mercury, Lead are not contained in all TDK MLCC.
- For European Directive 2003/11/CE: Pentabromodiphenylether, Octabromodiphenylether are not contained in all TDK MLCC.

^{*} This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.