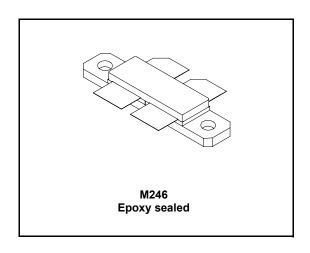
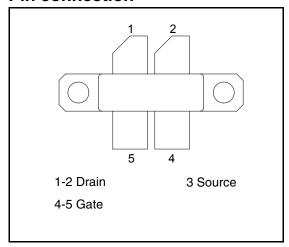


SD56120


RF POWER Transistors, LDMOST plastic family N-Channel enhancement-mode lateral MOSFETs

General features


- Excellent thermal stability
- Common source configuration Push-pull
- \blacksquare P_{OUT} = 100W with 14dB gain @ 860MHz
- BeO free package

Description

The SD56120 is a common source N-Channel enhancement-mode lateral Field-Effect RF power transistor designed for broadband commercial and industrial applications at frequencies up to 1.0GHz. The SD56120 is designed for high gain and broadband performance operating in common source mode at 28 V. It is ideal for broadcast applications from 470 to 860 MHz requiring high linearity.

Pin connection

Order codes

Part number	Package	Branding
SD56120	M246	TSD56120

July 2006 Rev 3 1/15

Contents SD56120

Contents

1	Electri	ical data	. 3
		Maximum ratings	
	1.2	Thermal data	. 3
2		ical characteristics	
	2.1	Static	. 4
	2.2	Dynamic	. 4
3	Imped	lances	. 5
4	Туріса	al performance	. 6
5	Test c	ircuit	. 9
6	Packa	ge mechanical data	12
7	Revisi	on history	14

SD56120 Electrical data

1 Electrical data

1.1 Maximum ratings

Table 1. Absolute maximum ratings $(T_{CASE} = 25^{\circ}C)$

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V _{GS}	Gate-Source Voltage	±20	V
I _D	Drain Current	14	Α
P _{DISS}	Power Dissipation (@ Tc = 70°C)	217	W
T _J Max. Operating Junction Temperature		200	°C
T _{STG}	Storage Temperature	-65 to +150	°C

1.2 Thermal data

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Junction - case thermal resistance	0.6	°C/W

Electrical characteristics SD56120

2 Electrical characteristics

$$T_{CASE} = +25$$
 °C

2.1 Static

Table 3. Static (per section)

Symbol	Test conditions				Тур	Max	Unit
V _{(BR)DSS}	V _{GS} = 0 V	I _{DS} = 1 mA		65			V
I _{DSS}	$V_{GS} = 0 V$	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$				1	μΑ
$V_{GS(Q)}$	V _{DS} = 28 V	I _D = 200 mA		3.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	$I_D = 3 A$			0.7	0.8	V
G_{FS}	V _{DS} = 10 V	$I_D = 3 A$			3		mho
C _{ISS}	$V_{GS} = 0 V$	V _{DS} = 28 V	f = 1 MHz		82		pF
C _{OSS}	$V_{GS} = 0 V$	$V_{DS} = 28 V$ f = 1 MHz			48		pF
C _{RSS}	$V_{GS} = 0 V$	V _{DS} = 28 V f = 1 MHz			2.8		pF

Note: REF. 7194566A

2.2 Dynamic

Table 4. Dynamic

Symbol	Test conditions	Min	Тур	Max	Unit
P _{OUT}	V _{DD} = 28 V I _{DQ} = 400 mA f = 860 MHz	100			W
G _{PS}	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 400 \text{ mA}$ $P_{OUT} = 100 \text{ W}$ $f = 860 \text{ MHz}$	14	16		dB
η	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 400 \text{ mA}$ $P_{OUT} = 100 \text{ W}$ $f = 860 \text{ MHz}$	50	60		%
G _{PS}	V _{DD} = 28 V I _{DQ} = 400 mA P _{OUT} = 100 W PEP		16		dB
h _D	V _{DD} = 28 V I _{DQ} = 400 mA P _{OUT} = 100 W PEP		50		%
IMD	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 400 \text{ mA}$ $P_{OUT} = 100 \text{ W PEP}$		-28		dB _t
Load mismatch	$V_{DD} = 28 \text{ V}$ $I_{DQ} = 400 \text{ mA}$ $P_{OUT} = 100 \text{ W f} = 860 \text{ MHz}$ All phase angles	5:1			VSWR

Note: f1 = 860 MHz

PEP f2 = 860.1 MHz

SD56120 Impedances

3 Impedances

Figure 1. Current conventions

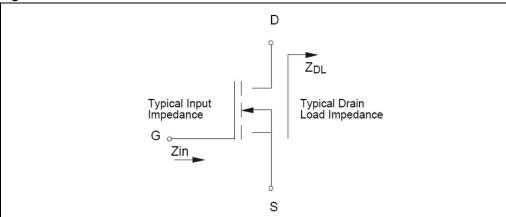


Table 5. Impedance data

Freq. (MHz)	Z _{IN} (Ω)	$Z_{DL}(\Omega)$
860 MHz	1.11 - j 2.63	3.01 + j 5.34


Note: Measured drain to drain and gate to gate respectively.

Typical performance SD56120

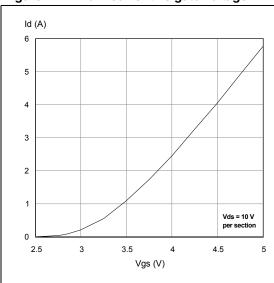
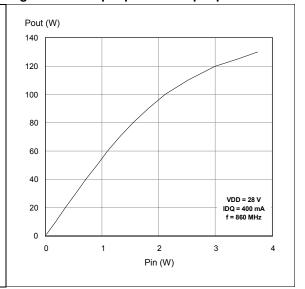
4 Typical performance

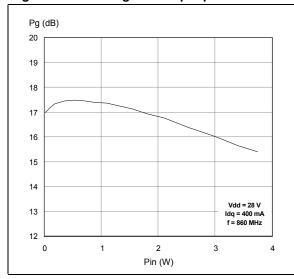
Figure 2. Capacitance vs drain voltage (per section)

Figure 3. Gate-source voltage vs case temperature

VGS (NORMALIZED) 1.04 1.02 ld = 1 A Id = 2 A ld = 3 A ld = 4 A ld = 5 A 0.98 V_{DS} = 10 V per section 0.96 0 25 50 75 -25 100 Tc (°C)

Figure 4. Drain current vs gate voltage


Figure 5. Output power vs input power

SD56120 Typical performance

Figure 6. Power gain vs input power

Figure 7. Efficiency vs output power

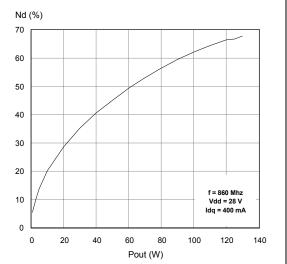
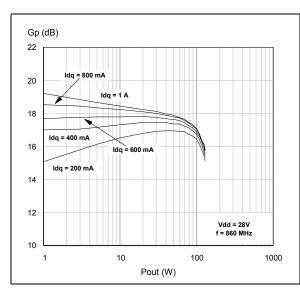
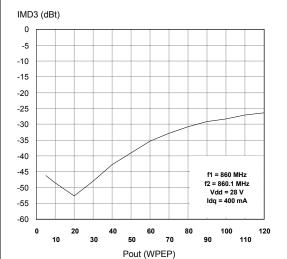
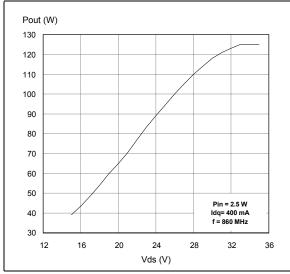




Figure 8. Power gain vs output power

Figure 9. Intermodulation distortion vs output power

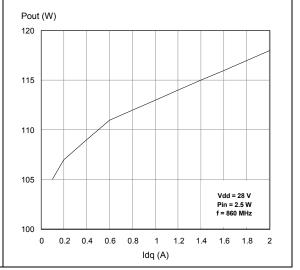
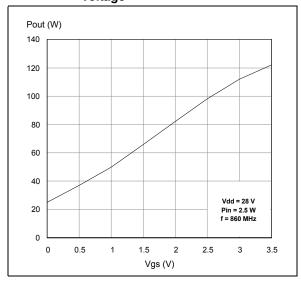
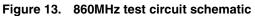


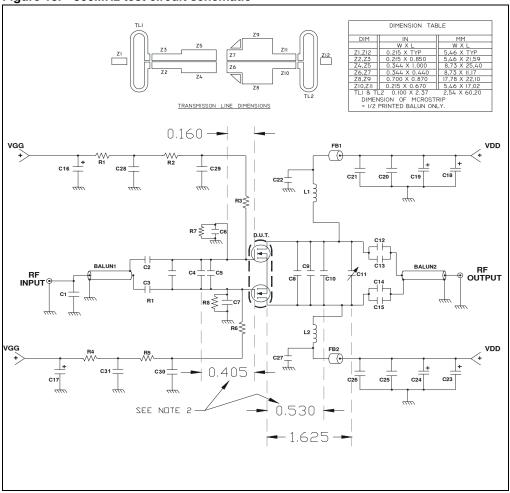
577

Typical performance SD56120

Figure 10. Output power vs drain voltage

Figure 11. Output power vs bias current


Figure 12. Output power vs gate-source voltage

SD56120 Test circuit

5 Test circuit

Note: 1 Dimensions at component symbols are reference for component placement.

2 Gap between ground & transmission line = 0.056 [1.42] +0.002 [0.05] -0.000 [0.00] typ.

Test circuit SD56120

Table 6. 860MHz test circuit component part list

Component	ponent Description	
C32	.6 - 4.5 pF VARIABLE CAPACITOR	
C31, C28	.01 μF ATC 200B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C29, C30	62 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C27, C22	270 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C26, C21	1200 pF ATC 700B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C25 ,C20	0.1 μF 500V SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C24, C19, C17, C16	10 μF 50V ALUMINUM ELECTROLYTIC RADIAL LEAD SURFACE MOUNT CAPACITOR	
C23, C18	100 μF 63V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR	
C15, C14, C13, C12	47 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C11	0.8 - 8 pF GIGATRIM VARIABLE CAPACITOR	
C10	3.0 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C9, C8	4.3 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C7, C6, C5	10 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C4	2.0 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C3, C2	20 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
C1	1.3 pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	
R7, R8	100 OHM 1/4 W SURFACE MOUNT CHIP RESISTOR	
R6, R3	22 OHM 1/4 W CARBON LEADED RESISTOR	
R5, R2	4.7 OHM 1/4 W CARBON LEADED RESISTOR	
R4, R1	82 OHM 1/4 W CARBON LEADED RESISTOR	
B2, B1	BALUN, 50 OHM SUCOFORM, OD 0.141 2.37 LG COAXIAL CABLE OR EQUIVALENT	
L2, L1	INDUCTOR, 6 TURN AIR-WOUND #18AWG ID=0.130[3,30] MAGNET WIRE	
FB2, FB1	SURFACE MOUNT EMI SHIELD BEAD	
PCB	ULTRALAM 2000. 0.030" THK ϵr = 2.55, 2 Oz ED CU BOTH SIDES	

SD56120 Test circuit

Figure 14. 860MHz production test fixture

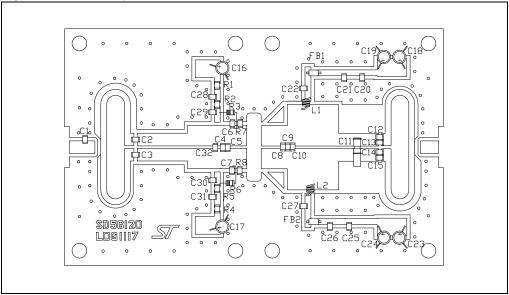
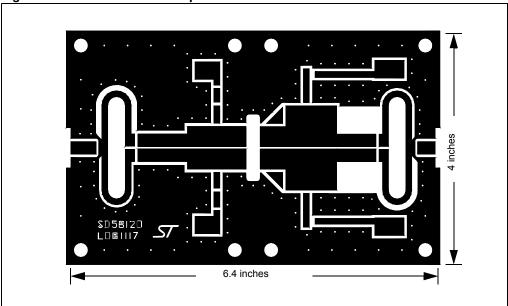
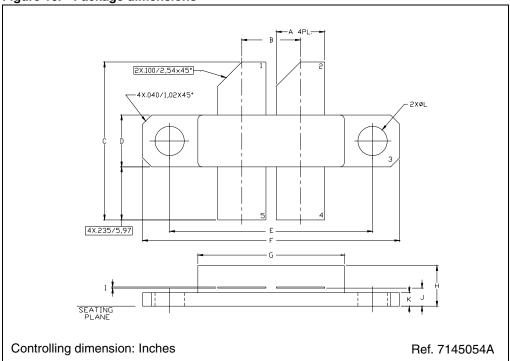



Figure 15. 860MHz test circuit photomaster

6 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

477

Table 7. M246 (.230 x .650 WIDE 4/L BAL N/HERM W/FLG) mechanical data

Dim.	mm.				Inch	
	Min	Тур	Max	Min	Тур	Max
Α	5.33		5.59	.210		.220
В	6.48		6.73	.255		.265
С	17.27		18.29	.680		.720
D	5.72		5.97	.225		.235
Е		22.86			.900	
F	28.83		29.08	1.135		1.145
G	16.26		16.76	.640		.660
Н	4.19		5.08	.165		.200
I	0.08		0.15	.003		.006
J	1.83		2.24	.072		.088
K	1.40		1.65	.055		.065
L	3.18		3.43	.125		.135

Figure 16. Package dimensions

477

Revision history SD56120

7 Revision history

Table 8. Revision history

Date	Revision	Changes
18-Jun-2001	1	First Issue
12-Sep-2004	2	Few updates
13-Jul-2006	3	New template, added lead free info

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION). OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

477