LD39015XX08 - LD39015XX10 LD39015XX12 - LD39015XX33 150 mA low quiescent current low noise voltage regulator #### **Features** - Input voltage from 1.5 to 5.5 V - Ultra low dropout voltage (80 mV typ. at 100 mA load) - Very low quiescent current (18 μA typ. at no load, 35 μA typ. at 150 mA load, 1 μA max in off mode) - Very low noise without bypass capacitor (29 µV_{BMS} at V_{OUT} = 0.8 V) - Output voltage tolerance: ± 2.0% @ 25 °C - 150 mA guaranteed output current - Wide range of output voltages available on request: 0.8 V to 3.3 V with 100 mV step - Logic-controlled electronic shutdown - Compatible with ceramic capacitors $C_{OUT} = 1 \mu F$ - Internal current and thermal limit - Available in SOT666 and SOT23-5L packages - Temperature range: -40 °C to 125 °C ### **Description** The LD39015XX series provides 150 mA maximum current from an input voltage ranging from 1.5 V to 5.5 V with a typical dropout voltage of 80 mV. It is stable with ceramic capacitor. The ultra-low drop voltage, low quiescent current and low noise features make it suitable for low power battery-powered applications. Power supply rejection is 65 dB at low frequencies and starts to roll off at 10 kHz. Enable logic control function puts the LD39015XX in shut-down mode allowing a total current consumption lower than 1 μA . The device also includes short-circuit constant current limiting and thermal protection. Typical applications are mobile phones, personal digital assistants (PDAs), cordless phones or similar battery-powered systems. Table 1. Device summary | Order | Order codes | | | | | |-----------------------------|----------------------------|-------|--|--|--| | SOT666 | T666 SOT23-5L | | | | | | LD39015XG08R | LD39015M08R ⁽¹⁾ | 0.8 V | | | | | LD39015XG10R ⁽¹⁾ | LD39015M10R | 1.0 V | | | | | LD39015XG12R ⁽¹⁾ | LD39015M12R | 1.2 V | | | | | LD39015XG15R ⁽¹⁾ | LD39015M15R ⁽¹⁾ | 1.5 V | | | | | LD39015XG18R ⁽¹⁾ | LD39015M18R ⁽¹⁾ | 1.8 V | | | | | LD39015XG25R ⁽¹⁾ | LD39015M25R ⁽¹⁾ | 2.5 V | | | | | LD39015XG33R | LD39015M33R ⁽¹⁾ | 3.3 V | | | | ^{1.} Available on request. Other voltages available on request from 0.8 V to 3.3 V in 100 mV step. October 2007 Rev. 1 1/16 ## **Contents** | 1 | Diagram | . 3 | |---|-------------------------------------|-----| | 2 | Pin configuration | . 4 | | 3 | Typical application | . 5 | | 4 | Maximum ratings | . 6 | | 5 | Electrical characteristics | . 7 | | 6 | Typical performance characteristics | . 9 | | 7 | Package mechanical data | 11 | | Ω | Povision history | 15 | # 1 Diagram Figure 1. Block diagram # 2 Pin configuration Figure 2. Pin connection (top view) Table 2. Pin description | Pir | n n° | Symbol | Function | | |--------|-----------------|--------|---|--| | SOT666 | SOT666 SOT23-5L | | runction | | | 1 | 3 | EN | Enable pin logic input: Low=shutdown, High=active | | | 2 | 2 | GND | Common ground. | | | 3 | 1 | IN | Input voltage of the LDO | | | 4 | 5 | OUT | Output voltage | | | 5 | 4 | NC | Not connected | | | 6 | | NC | Not connected | | # 3 Typical application Figure 3. Typical application circuit ## 4 Maximum ratings Table 3. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |------------------|--------------------------------------|------------------------------|------| | V _{IN} | DC input voltage | -0.3 to 7 | V | | V _{OUT} | DC output voltage | -0.3 to V _I + 0.3 | ٧ | | V _{EN} | Enable input voltage | -0.3 to V _I + 0.3 | ٧ | | I _{OUT} | Output current | Internally limited | mA | | P _D | Power dissipation | Internally limited | mW | | T _{STG} | Storage temperature range | -65 to 150 | °C | | T _{OP} | Operating junction temperature range | -40 to 125 | °C | Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. All values are referred to GND. Table 4. Thermal data | Symbol | Parameter | SOT23-5L | SOT666 | Unit | |-------------------|-------------------------------------|----------|--------|------| | R _{thJA} | Thermal resistance junction-ambient | 255 | 132 | °C/W | | R _{thJC} | Thermal resistance junction-case | 81 | 56 | °C/W | ## 5 Electrical characteristics Table 5. Electrical characteristics $(T_J = 25^{\circ}C, V_{IN} = V_{OUT(NOM)} + 1V, C_{IN} = C_{OUT} = 1 \mu F, I_{OUT} = 1 mA, V_{EN} = V_{IN}$, unless otherwise specified) (1) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | | |-------------------|---|---|------|-------|------|-------------------|--| | V_{IN} | Operating input voltage | | 1.5 | | 5.5 | ٧ | | | V | Turn-on threshold | | | 1.45 | 1.48 | ٧ | | | V_{UVLO} | Turn-off threshold | | 1.30 | 1.35 | | mV | | | | | V _{OUT} > 1.5V, I _{OUT} = 1mA, T _J = 25°C | -2.0 | | 2.0 | | | | V | V conveni | V _{OUT} > 1.5V, I _{OUT} = 1mA,
-40°C < T _J < 125°C | -3.0 | | 3.0 | % | | | V _{OUT} | V _{OUT} accuracy | V _{OUT} ≤1.5V, I _{OUT} = 1mA | | ±10 | | | | | | | V _{OUT} ≤1.5V, I _{OUT} = 1mA,
-40°C < T _J < 125°C | | ±30 | | mV | | | ΔV _{OUT} | Static line regulation | V _{OUT} +1V ≤V _{IN} ≤5.5V, I _{OUT} = 1mA | | 0.01 | | %/V | | | ΔV _{OUT} | Transient line regulation (2) | $\Delta V_{IN} = +500$ mV, $I_{OUT} = 1$ mA, $T_R = T_F = 5$ µs | | 10 | | mVpp | | | ΔV _{OUT} | Static load regulation | I _{OUT} = 1mA to 150mA | | 0.002 | | %/mA | | | ΔV_{OUT} | Transient load regulation (2) | $I_{OUT} = 1$ mA to 150mA, $T_R = T_F = 5$ µs | | 40 | | mVpp | | | V _{DROP} | Dropout voltage (3) | I _{OUT} = 100mA, V _{OUT} > 1.5V
-40°C < T _J < 125°C | | 80 | 100 | mV | | | e _N | Output noise voltage | 1.1KHz to 100KHz, I _{OUT} = 10mA,
V _{OUT} = 0.8V | | 29 | | μV _{RMS} | | | SVD | SVR Supply voltage rejection $V_{OUT} = 1.5V$ | $V_{IN} = V_{OUTNOM} + 0.5V + /-V_{RIPPLE}$ $V_{RIPPLE} = 0.1V$, Freq. = 1KHz $I_{OUT} = 10$ mA | | 65 | | dB | | | SVN | | $V_{IN} = V_{OUTNOM} + 0.5V + /-V_{RIPPLE}$
$V_{RIPPLE} = 0.1V$, Freq.=10KHz
$I_{OUT} = 10$ mA | | 62 | | ub l | | | | | I _{OUT} = 0mA | | 18 | | | | | | | I _{OUT} = 0mA, -40°C < T _J < 125°C | | | 50 | | | | | | I _{OUT} = 0 to 150mA | | 38 | | | | | ΙQ | Quiescent current | I _{OUT} = 0 to 150mA
-40°C < T _J < 125°C | | | 70 | μΑ | | | | | V _{IN} input current in OFF MODE:
V _{EN} = GND | | 0.001 | 1 | | | | I _{SC} | Short circuit current | R _L = 0 | | 350 | | mA | | | V | Enable input logic low | V _{IN} = 1.5V to 5.5V,
-40°C < T _J < 125°C | | | 0.4 | V | | | V _{EN} | Enable input logic high | V _{IN} = 1.5V to 5.5V,
-40°C < T _J < 125°C | 0.9 | | | V | | | I _{EN} | Enable pin input current | V _{SHDN} = V _{IN} | | 0.1 | 100 | nA | | 7/16 Table 5. Electrical characteristics (continued) ($T_J = 25^{\circ}C$, $V_{IN} = V_{OUT(NOM)} + 1V$, $C_{IN} = C_{OUT} = 1$ μ F, $I_{OUT} = 1$ mA, $V_{EN} = V_{IN}$, unless otherwise specified) (1) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |------------------|-----------------------------|---|------|------|------|------| | T _{ON} | Turn on time ⁽⁴⁾ | | | 30 | | μs | | т | Thermal shutdown | | | 160 | | °C | | SHDN | Hysteresis | | | 20 | | C | | C _{OUT} | Output capacitor | Capacitance (see typical performance characteristics for stability) | 1 | | 22 | μF | - 1. For $V_{OUT(NOM)} < 1.2 \text{ V } V_{IN} = 1.5 \text{ V}$ - 2. All transient values are guaranteed by design, not production tested - 3. Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 1.5 V - 4. Turn-on time is the time measured between the enable input just exceeding V_{EN} High Value and the output voltage just reaching 95% of its nominal value ## **6** Typical performance characteristics Figure 4. Output voltage vs temperature Figure 5. Output voltage vs input voltage Figure 6. Dropout voltage vs output current Figure 7 Figure 7. C_{OUT} stability region Figure 8. Supply voltage rejection vs frequency Figure 9. Output noise voltage vs frequency Figure 10. Quiescent current vs input voltage Figure 11. Load transient Figure 13. Enable transient 10/16 ## 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. ### SOT23-5L mechanical data | Dim. | | mm. | | | mils. | | |--------|------|------|------|-------|-------|-------| | Dilli. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | 0.90 | | 1.45 | 35.4 | | 57.1 | | A1 | 0.00 | | 0.10 | 0.0 | | 3.9 | | A2 | 0.90 | | 1.30 | 35.4 | | 51.2 | | b | 0.35 | | 0.50 | 13.7 | | 19.7 | | С | 0.09 | | 0.20 | 3.5 | | 7.8 | | D | 2.80 | | 3.00 | 110.2 | | 118.1 | | Е | 1.50 | | 1.75 | 59.0 | | 68.8 | | е | | 0.95 | | | 37.4 | | | Н | 2.60 | | 3.00 | 102.3 | | 118.1 | | L | 0.10 | | 0.60 | 3.9 | | 23.6 | #### SOT666 mechanical data | Dim | | mm. | | | inch. | | |------|------|------|------|-------|-------|-------| | Dim. | Min. | Тур. | Max. | Min. | Тур. | Max. | | А | 0.53 | 0.57 | 0.60 | 0.021 | 0.022 | 0.024 | | A3 | 0.13 | 0.17 | 0.18 | 0.005 | 0.006 | 0.007 | | D | 1.50 | 1.66 | 1.70 | 0.059 | 0.065 | 0.067 | | E | 1.50 | 1.65 | 1.70 | 0.059 | 0.065 | 0.067 | | E1 | 1.10 | 1.20 | 1.30 | 0.043 | 0.047 | 0.051 | | L1 | 0.11 | 0.19 | 0.26 | 0.004 | 0.007 | 0.010 | | L2 | 0.10 | 0.23 | 0.30 | 0.004 | 0.009 | 0.012 | | L3 | 0.05 | 0.10 | | 0.002 | 0.004 | | | b | 0.17 | | 0.25 | 0.17 | | 0.25 | | b1 | | 0.27 | 0.34 | | 0.27 | 0.34 | | е | | 0.50 | | | 0.5 | | | e1 | 0.20 | | | 0.2 | | | | θ | 8° | 10° | 12° | 8° | 10° | 12° | | Tape & reel SOT23-xL | mechanical | data | |----------------------|------------|------| |----------------------|------------|------| | Dim | Dim. | | mm. | | inch. | | | |------|------|------|------|-------|-------|--------|--| | DIM. | Min. | Тур. | Max. | Min. | Тур. | Max. | | | А | | | 180 | | | 7.086 | | | С | 12.8 | 13.0 | 13.2 | 0.504 | 0.512 | 0.519 | | | D | 20.2 | | | 0.795 | | | | | N | 60 | | | 2.362 | | | | | Т | | | 14.4 | | | 0.567 | | | Ao | 3.13 | 3.23 | 3.33 | 0.123 | 0.127 | 0.131 | | | Во | 3.07 | 3.17 | 3.27 | 0.120 | 0.124 | 0.128 | | | Ko | 1.27 | 1.37 | 1.47 | 0.050 | 0.054 | 0.0.58 | | | Po | 3.9 | 4.0 | 4.1 | 0.153 | 0.157 | 0.161 | | | Р | 3.9 | 4.0 | 4.1 | 0.153 | 0.157 | 0.161 | | # 8 Revision history Table 6. Document revision history | Date | Revision | Changes | |-------------|----------|------------------| | 12-Oct-2007 | 1 | Initial release. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2007 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 577 16/16