SIEMENS

Programmable Dialing Circuit (PDC)

PSB 8510-X

Preliminary Data

CMOS IC

Туре	Ordering Code	Package		
PSB 8510-1	Q67100-H8327	P-DIP-20		
PSB 8510-2	Q67100-H8438	P-DIP-20		
PSB 8510-4	Q67100-H8627	P-DIP-20		
PSB 8510-6	Q67100-H6066	P-DIP-20		

This is a general description of the pulse/tone dialer family PSB 8510-X with an overview on the present versions.

Detailed information on each of these versions is also available.

The digital signaling generator PSB 8510-X is specifically designed to implement dual tone multifrequency (DTMF) and pulse dialing (PD) in a telephone set.

The device can be connected directly to a standard push button keyboard (single contact matrix, type x-y) with up to 20 buttons (depending on the version).

It works together with an integrated speech circuit (e.g. PSB 4500/01, PSB 4505/06). Redial allows comfortable dialing. The PSB 8510-X is a highly flexible device realized by pin selectable and mask programmable functions.

Mask programmable:

- All timings in steps of 1 ms up to 6 s (e.g. timing of DTMF and PD, flash and line grounding)
- Function of the selecting pins
- Special features (telephone sets for PBX/key systems)

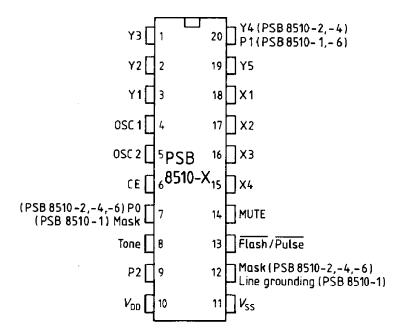
Pin selectable:

- Access pause generation and timing
- Default dialing mode and PD timing (different break/make ratios)
- Different sets of timings

All possibilities of selecting features and timings are given in the chapter "Timing Parameters of the Present Versions"

Features

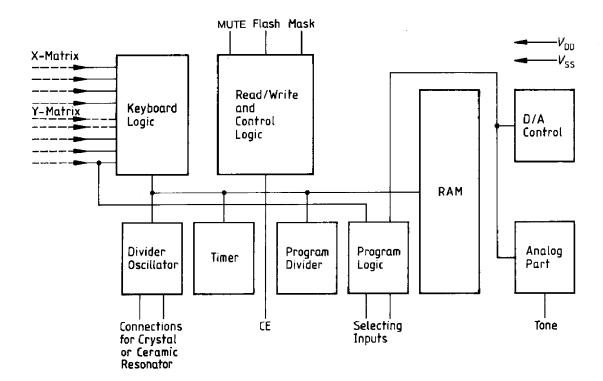
Common Features


- Advanced CMOS technology
- Pulse (PD) and dual tone multi frequency (DTMF) dialing on chip
- Mixed dial and redial (pulse/DTMF)
- Selection of default dial mode (PD or DTMF) by selecting pins
- Last number redial up to 22 digits with data retention monitoring
- Generation of 12 or 16 different frequency pairs
- DTMF output signals meet CEPT specification without external filtering
- DTMF-level is independent of supply-voltage
- Single tone generation (e.g. for testing)
- No external components except TV standard crystal or ceramic resonator (3.58 MHz)
- Keyboard wake up function allows reduced power consumption
- Automatic and/or manual access pause generation depending on the version
- Signaling key (SK) with flash function
- Mute signal to mute the speech circuit
- Special device control keys
- Supervision and control of line conditions
- Low data retention voltage (1.2 V)
- Low operation and standby current
- Internal power-on reset
- P-DIP-20 package
- P-DSO-20 package in planning

Special Features (depending on the versions)

- Saved number redial or notice (scratched) function up to 22 digits with separate memory
- Last number redial up to 32 digits with data retention monitoring but without saved number redial (PSB 8520-2, PSB 8510-4)
- Special functions for PBX internal calls and register (re)calls (PSB 8510-2, PSB 8510-4)
- Generation of 16 different frequency pairs with individual handling of A, B, C, D keys (PSB 8510-2, PSB 8510-4)
- Signaling key (SK) with flash and line grounding function (PSB 8510-1)
- Mask output

Pin Configuration


(top view)

Pin Definitions and Functions

Pin No.	Symbol	Function			
1 2 3	Y3 Y2 Y1	Keyboard interface columns			
4 5	OSC 1 OSC 2	Connections for crystal or ceramic resonator			
6	CE	Hook-Switch/Chip enable			
7 7	P0 Mask	Selecting pin (PSB 8510-2, -4, -6) Mask output (PSB 8510-1)			
8	Tone	DTMF output			
9	P2	Selecting pin			
10	V _{DD}	Positive supply voltage			
11	V _{SS}	Ground			
12 12	Line GND Mask	Line grounding output (PSB 8510-1) Mask output (PSB 8510-2, -4, -6)			
13	Flash/Pulse	Flash/Pulse output (active low)			
14	MUTE	MUTE output (active high)			
15 16 17 18	X4 X3 X2 X1	Keyboard interface rows			
19	Y5	Keyboard interface column			
20 20	Y4 P1	Keyboard interface column (PSB 8510-2, -4 Selecting pin (PSB 8510-1, -6)			

Block Diagram PSB 8510-X

Functional Description

After off hook, the device changes from standby to wake-up state. In this state only the pull up/pull down current sources for the keyboard inputs are activated.

After detecting a key input signal, the oscillator starts.

When the amplitude of the clock-generator is high enough to drive the logic, the oscillator current will be reduced.

When there is a valid code at the inputs for longer than 6.4 ms without interruption, it will be accepted.

If the first input is a dialing digit (incl. *, #) or a pause, the LNR-RAM will be reset. The dialing digit or pause will be stored.

The device then starts the dialing procedure. At the same time further digits can be entered from the keyboard. They are also stored in the LNR-RAM.

For the handling of a Signal Key (SK) pressure see chapter "Signaling Key Functions" After on hook, the device goes into the standby mode by performing a special procedure.

Clock Generation

The device contains an oscillator circuit with the needed parasitic capacitances on chip. So, to implement the oscillator function, it is only necessary to connect a standard 3.58 MHz TV crystal or an adequate ceramic resonator to the OSC1 and OSC2 pins.

The oscillator starts when a row and a column input is activated. The typical start up time is approximately 1ms with crystal operation.

If a ceramic resonator is used instead of a crystal, the dimensioning and connecting instructions of the manufacturer should be followed.

Keyboard Interface

The device can be connected directly to a x-y matrix keyboard without mechanical protection against multi-key pressure (figure 1). Internal logic prevents the transmission of illegal information if more than one key is pressed at the same time. The inputs are static after key recognition, i.e. there is no noise generation as occurs with scanned or dynamic inputs. The internal current sources allow contact resistances up to 1 k Ω in the closed condition and down to 100 k Ω in the open condition. The minimum key-closure time is 6.4 ms in the start-up condition and adapts automatically to longer bouncing times. To enable the recognition circuit for the next digit, the key contact has to be opened for more than 12 ms. It is also possible to drive the key-recognition circuit with binary input. The corresponding binary codes are given in **table 1**.

The timing is: Valid code input for min. 6.4 ms; then "no input signal" for min. 12 ms.

Figure 1
Keyboard Connection

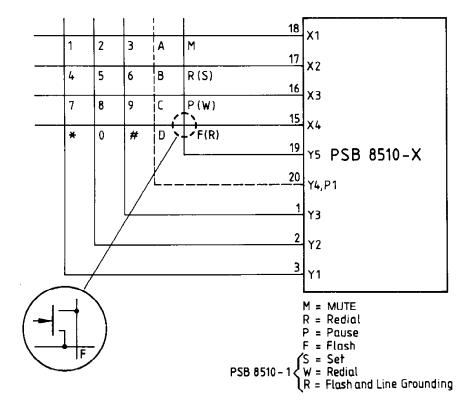
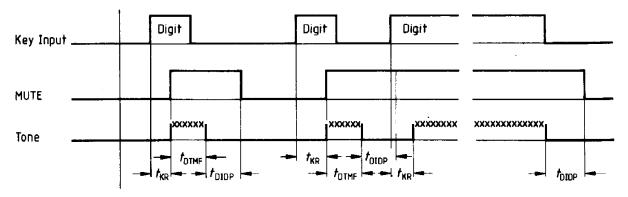


Table 1
Codes for X-Y-Matrix Input


		Y	,				X		Function
5	4	3	2	1	4	3	2	1	
0	0	0	0	0	1	1	1	1	no input signal
0	0	0	0	1	1	1	1	1	single tone 1209 Hz
0	0	0	1	0	1	1	1	1	single tone 1336 Hz
0	0	1	0	0	1	1	1	1	single tone 1477 Hz
0	1	0	0	0	1	1	1	1	single tone 1633 Hz
0	0	0	0	0	1	1	1	0	single tone 697 Hz
0	0	0	0	0	1	1	0	1	single tone 770 Hz
0	0	0	0	0	1	0	1	1	single tone 852 Hz
0	0	0	0	0	0	1	1	1	single tone 941 Hz
0	0	0	0	1	1	1	1	0	key "1"
0	0	0	0	1	1	1	0	1	key "4"
0	0	0	0	1	1	0	1	1	key "7"
0	0	0	0	1	0	1	1	1	key "*"
0	0	0	1	0	1	1	1	0	key "2"
0	0	0	1	0	1	1	0	1	key "5"
0	0	0	1	0	1	0	1	1	key "8"
0	0	0	1	0	0	1	1	1	key "0"
0	0	1	0	0	1	1	1	0	key "3"
0	0	1	0	0	1	1	0	1	key "6"
0	0	1	0	0	1	0	1	1	key "9"
0	0	1	0	0	0	1	1	1	key "#"
0	1	0	0	0	1	1	1	0	key "A"
0	1	0	0	0	1	1	0	1	key "B"
0	1	0	0	0	1	0	1	1	key "C"
0	1	0	0	0	0	1	1	1	key "D"
1	0	0	0	0	1	1	1	0	key "M"
1	0	0	0	0	1	1	0	1	key "R" ("S")
1	0	0	0	0	1	0	1	1	key "P" ("R")
1	0	0	0	0	0	1	1	1	key "F"
0_	0	0	1	0	0	0	0	0	clear memories
0	0	0	0	0	0	1	1	0	TESTM (test-mode)
res	t								not accepted

Dialing Functions

Dual Tone Mode

When a row and a column are connected via key, a dual tone output consisting of the appropriate low group and high group frequency is generated. A DTMF signal can be achieved within $t_{\rm KR}$ after key closure when there is no switch bounce. If two or more keys are pressed at the same time, no tone will appear at the output. The DTMF signal is timed for a minimum sending time of $t_{\rm DTMF}$ or as long as the key is pressed. Subsequently, an Interdigital Pause (IDP) $t_{\rm DIDP}$ is generated. Both times $t_{\rm DTMF}$ and $t_{\rm DIDP}$ are mask-programmable. The MUTE output is active ($V_{\rm DD}$) during $t_{\rm DTMF}$ and $t_{\rm DIDP}$.

Figure 2 DTMF-Dialing

t_{KR:}

Key recognition time DTMF burst duration

DTMF: DTMF burst duration

pause duration

Single Tone Mode

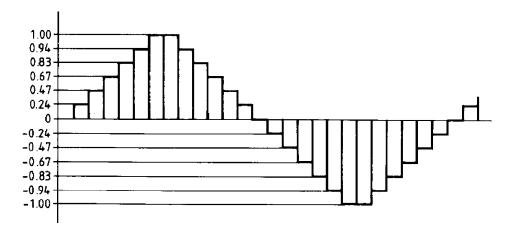

A low group tone can be generated by connecting an appropriate row input (X1...X4) to ground (V_{SS}) . A high group tone can be generated by connecting an appropriate column input (Y1...Y4) to V_{DD} . Both modes can also be obtained with binary inputs (see table 1). In this mode no digits will be stored in the RAM. The generation time is as long as the inputs are connected to V_{DD} or V_{SS} (respectively). A stored dialed-number remains in the RAM.

Table 2
Output Frequencies

Active Output Free		equency (Hz)	% Error	
Input	Specified	Actually	(without Crystal Drift	
X1	697	695.32731	-0.240	
X2	770	773.45398	+0.448	
Х3	852	849.84449	-0.253	
X4	941	942.97813	+0.210	
Y1	1209	1207.67375	-0.110	
Y2	1336	1336.64862	+0.049	
Y3	1477	1480.37428	+0.228	
Y4	1633	1638.98581	+0.365	

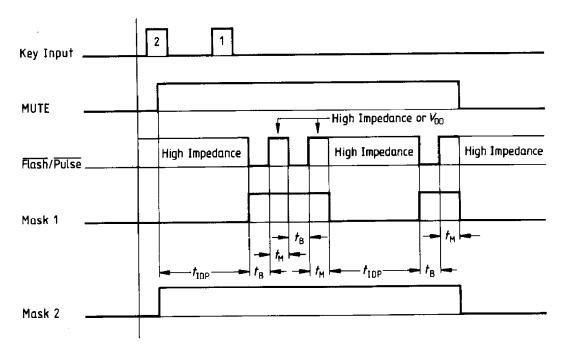
Oscillator frequency $f_{XTAL} = 3.579545 \text{ MHz}$

Figure 3
Synthesized Output Waveforms

Tone Generation

For the tone generation the device contains only one D/A-converter, which is designed as a special capacitor network for generating sine-waves as shown in **figure 3**. The converter is multiplexed to generate the two frequency groups.

The two sine-waves so generated are equal in amplitude and have very low distortion. They are filtered separately by second order lowpass filters and added in the output buffer which is connected as a first order lowpass filter. The ratio of the amplitudes of the frequencies from the low and high groups depends only on the ratio of two resistors. So the DTMF output signals meet CEPT specification without external components.


Pulse Mode

When the device is in Pulse-Dialing-mode (PD), the tone output is switched to high impedance and the Flash/Pulse output works as pulse output. After a digit is read from RAM, the device first generates an Interdigital Pause (IDP) which is $t_{\rm IDP}$ long.

The Flash/Pulse output is then switched from high impedance to $V_{\rm SS}$ during the Breaktime ($t_{\rm B}$). Subsequently the Flash/Pulse output is switched back to high impedance or to $V_{\rm DD}$ (depends on the version) for the Make-time ($t_{\rm M}$). Depending on the digit read from RAM, the device repeats this Break-Make cycle. During Interdigital Pause ($t_{\rm IDP}$), Make-time ($t_{\rm M}$) and Break-time ($t_{\rm B}$), the MUTE output is active ($V_{\rm DD}$).

The values of $t_{\rm B}$, $t_{\rm M}$, $t_{\rm IDP}$ as well as the PD frequency are mask-programmable and pin-selectable. Two mask signals are possible (Mask1 or Mask2).

Figure 4
Pulse Dialing

Special Functions

Keyboard Configuration

Figure 5 shows the keyboard configuration with a maximum number of keys.

Figure 5
Keyboard Configuration

High Frequency Group						Control	
		1209	1336	1477	1633	Keys	
Group	697	9	(2)	3	A	(f)	X1
	770	(c)	(<u>c</u>)	(6)	B	F 2	X2
Frequency	852	7	(0)	©	0	(3)	Х3
Lo.	941	*	0	*	0	F	X4
		Y1	Y2	Y3	Y4	Y5	

The colums Y4 and Y5 are optional.

If the A, B, C, D keys (column Y4) are not needed, the column input Y4 can be replaced by a selecting pin (PSB 8510-1, -6).

The functions of the column Y5 are mask-programmable (for the actual existing control keys see chapter "Present Versions of the PSB 8510-X").

RAM Configuration

Configuration I

1. RAM 1st digit . . . 22nd digit

2. RAM 1st digit . . . 22nd digit

3. RAM (cyclic RAM) 1st digit . . . 8th digit

Configuration II

1. RAM 1st digit . . . 32nd digit

2. RAM (cyclic RAM) 1st digit . . . 8th digit

Last/Saved Number Redial

Last Number Redial (LNR) is possible by depressing the "Redial"-key as first key input after off hook. Then all stored digits of the LNR-RAM will be sent out.

Saved Number Redial (SNR) is possible by depressing the "Mute"- and the "Redial"-key one after the other. Then all stored digits of the SNR-RAM will be sent out (valid for devices with a SNR function).

After finishing the redial functions (LNR, SNR), it is possible to dial additionally an unlimited number of digits, which will be transmitted. These digits are stored in the cyclic RAM and the contents of the LNR and SNR-RAM will not be affected.

In conversation mode after finishing dialing it is possible to save the last number of the LNR-RAM into the SNR-RAM with the "Redial"-key (valid for devices with a SNR function).

Access Pause Function

If the telephone needs access pauses, e.g. for trunk searching or dial-tone connection, they should be stored in the RAM for redial access.

The PSB 8510-X offers two possible methods of generating and storing access pauses.

1. Pause Key Function (Manual Pause)

Pressing the pause-key in the dial sequence causes a pause code to be stored in the RAM. When this code is read, dialing is interrupted for the access pause time choosen at the selecting pins.

2. Automatic Pause Function

If an automatic pause function is enabled (via selecting pins, see chapter "Timing Parameters") a defined number of pauses can be generated automatically.

They are generated if the time between two key pressures is greater than e.g. 800 ms in DTMF-mode or greater than 10 ms in pulse-mode (mask-programmable, depending on requirements).

Siemens Aktiengesellschaft

Access Pause Duration

The maximum duration of an Access Pause is t_{AP} .

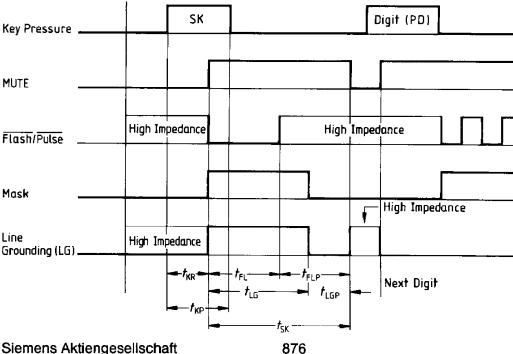
Each access pause can be shortened via the redial-key (go-function), then the next digit will be read from RAM.

During the pause-time t_{AP} , the MUTE output is inactive.

Signaling Key Functions

The Signaling Key (SK) means either the flashing key or the flashing plus grounding key.

If the signaling key is pressed, a SK code is written in the RAM. Reading this code, independent of dialing mode, the device generates either just a flash signal or a flash signal plus a line grounding signal simultaneously (depending on the version).


During a Flash signal (t_{FL}) the Flash/Pulse output is switched from high impedance to V_{SS} . A loop-disconnection will be ignored by the dialer in this state. After the Flash signal (t_{Fl}) a Flash Pause (t_{FLP}) follows.

Both times t_{FL} and t_{FLP} are mask programmable and/or pin-selectable. In case of Line Grounding (t_{LG}) the Line Grounding output is switched from high impedance to V_{DD} . After the Line Grounding signal (t_{LG}) a Line Grounding Pause (t_{LGP}) follows.

During Line Grounding signal (t_{LG}) the mask output is active (V_{DD}). The total time of flash signal and flash pause is indentical with the total time of Line Grounding signal and Line Grounding Pause $(t_{FL} + t_{FLP} = t_{LG} + t_{LGP} = t_{SK})$. During this time (t_{SK}) the MUTE output is active (V_{DD}) .

After the Signaling Key function (t_{SK}) in last number redial an Access Pause with t_{AP} can be generated before the next digit is read from RAM.

Figure 6 Timing Diagram for a Signaling Key Function with Pulse Dialing (PSB 8510-1)

MUTE/Mask Signal

The MUTE output is active ($V_{\rm DD}$) while sending dial information including Interdigital Pauses (IDP) ($t_{\rm DTMF}+t_{\rm DIDP}$ in DTMF and $t_{\rm B}+t_{\rm M}+t_{\rm IDP}$ in PD mode) and while sending a Signaling Key (SK) function ($t_{\rm SK}$).

During access pauses the MUTE output is not active (V_{SS}) .

The mask output is active $(V_{\rm DD})$ while sending digits in PD mode $(t_{\rm B}+t_{\rm M})$, excluding IDP (Mask1) or including IDP (Mask2) and while sending a Line Grounding signal $(t_{\rm LG})$, excluding Line Grounding Pause $(t_{\rm LGP})$.

In conversation mode and during access pause the MUTE output can be activated by pressing the MUTE key (M).

A subsequent key input (any key) deactivates the MUTE output ($V_{\rm SS}$). It is possible to toggle the MUTE output with the MUTE key without invoking any other function.

Selection and Changing of Dialing Mode

The default dialing mode is choosen by the selecting pin (see chapter "Timing Parameters").

After hooking off and depressing the first key (oscillator starts), the device checks the selecting pins and sets the default dialing mode (PD or DTMF).

Changing dialing mode in off hook condition after the first key pressure by switching the selecting pins is not possible. Changing dialing mode via keyboard is possible, depending on the version.

Test Mode

The device has different test modes. By connecting the inputs X2, X3 to $V_{\rm DD}$ and X1, X4 as well as all Y inputs to $V_{\rm SS}$ (TESTM) and releasing them, one test mode after the other will be activated. In each of these test modes the X/Y key-inputs work normally. In the different modes all timings will speed up with defined factors.

Hook-Switch/Chip Enable (CE)

The device achieves reduced power consumption for data retention in power down mode, when the CE-input is low (V_{SS}) .

In this mode the pull up/pull down-current sources are disconnected from the key inputs. All other inputs are inactive (standby mode).

When the CE-input is high $(V_{\rm DD})$, the row and column-inputs are enabled and the device can be started via key pressure (wake-up mode).

When the device is started, it ignores line current breaks, which pull the CE-input down to $V_{\rm SS}$, for up to e.g. 240 ms. The device interrupts dialing but accepts key-inputs during that time and continues dialing when the line current is restored.

Absolute Maximum Ratings

 $T_A = -25$ °C to 70 °C

		Limi		
Parameter	Symbol	min.	max.	Unit
DC supply voltage	(V _{DD} -V _{SS})	-0.5	6	٧
Input voltage at any pin	V _t	V _{SS} -0.5	V _{DD} +0.5	٧
Power dissipation	P _{tot}		500	mW
Operating ambient temperature	τ_{A}	-25	70	°C
Storage temperature	T _{stg}	-55	125	°C

DC Characteristics

 $V_{\rm DD} = 3.5$ V and $T_{\rm A} = -25\,^{\circ}{\rm C}$ to 70 °C, unless otherwise noted

Parameter	Symbol	min.	typ.	max.	Unit
Supply voltage a) for specified DTMF-level and distortion b) for digital operation	V _{DD}	3.0 2.5	3.5	6.0	V
Operating current a) DTMF, one key pressed tone and MUTE output unloaded $V_{DD} = 3.5 \text{ V}$ $V_{DD} = 3.0 \text{ V}$ b) Pulse-dialing, pause or flash, no key pressed, MUTE and line GND unloaded	$I_{ extsf{DD}}$		1 0.25	1.5 1.2 0.30	mA mA
Current in wake-up mode before first key pressure	I_{DD}		10	20	μА
Standby current $CE = V_{SS}$	I_{DD}		0.5	1	μА
Standby voltage for data retention	V _{DD}	1.2		6	V

DC Characteristics (cont'd)

				lues		
Parameter		Symbol	min.	typ.	max.	Unit
Outputs MUTE, Mask						
H-voltage L-voltage		V _{OH} V _{OL}	3.1		0.4	V V
H-current L-current		I_{OH} I_{OL}	0.5 1		2 3	mA mA
Flash						
H-voltage L-voltage		V _{ОН} V _{OL}	3.1		0.4	V V
H-current L-current		I_{OH} I_{OL}	0.5 1		2 3	mA mA
Tone						
DC-level		V _{DC}	1.9	2	2.1	٧
Inputs Chip enable (0	CE)					
Input voltage		V _{IH} V _{IL}	$(V_{DD} - 0.5)$ $(V_{SS} - 0.3)$		$(V_{DD} + 0.3)$ $(V_{SS} + 0.5)$	> >
Input current		$I_{IH} - I_{IL}$			50 50	nA nA
Selecting Pins (P ₀ , P ₁ , P ₂)						
Input voltage		V _{IH} V _{IL}	$(V_{DD} - 0.5)$ $(V_{SS} - 0.3)$		$(V_{DD} + 0.3)$ $(V_{SS} + 0.5)$	V V
Input current	(during scanning)	$I_{IH} = I_{IL}$			400 400	μA μA
	(scanning completed)	$I_{IH} - I_{IL}$			100 100	nA nA
						

Matrix Keyboard Operation

			Limit Val	ues	Unit
Parameter	Symbol	min.	typ.	max.	
Keyboard current X connected to Y	I_{Key}		70	100	μА
X1X4					
Input current V _{IN} = 0-1 V	$-I_{IL}$			400	μΑ
Input voltage	V _{IH} V _{IL}	(V _{DD} -0.5) (V _{SS} -0.3)		(V _{DD} +0.3) (V _{SS} +0.5)	
Y1Y5		•			
Input current V _{IN} = 2.5-3.5 V	I_{IH}			400	μА
Input voltage	V _{IH} V _{IL}	$(V_{DD} - 0.5)$ $(V_{SS} - 0.3)$		(V _{DD} +0.3) (V _{SS} +0.5)	V V
ON resistance Contact ON OFF resistance Contact OFF	R _{Key ON}	100		1	kΩ kΩ

AC Characteristics

 $T_A = -25$ °C to 70 °C

		Limit Values			
Parameter	Symbol	min.	typ.	max.	Unit
Tone Output					
Small signal output impedance	Z _O	0.6	0.8	1.3	kΩ
Output resistance (load AC-coupled) for specified distortion (CEPT)	R _L	15	30	∞	kΩ
Output Voltage (rms-values, no load)					
Sum level Low group High group	V _S V _L V _H	236 297	426 265 333	297 373	mV mV mV
Preemphasis	P _D	1	2	3	dB
Frequency deviation (without crystal tolerance)	F	-0.254		0.448	%
Oscillator					
Recommended crystal	R _S L _L C _M C _N		100 96 0.02 5		Ω mHy pF pF
Start-up time	t _{S0}	0.5	0.6	1	ms
Keyboard debounce time	t _b	6.4	adaptive	adaptive	ms
Set-up time (first key depressing to full level for DTMF)	t _S	8			ms
$(t_{S0} + t_b + t_{for read-write-logic})$					

Present Versions of the PSB 8510-X

	PSB 8510-1 German Bundespost	PSB 8510-2	PSB 8510-4	PSB 8510-6
Ordering Code	Q67100-H8327	Q67100-H8438	Q67100-H8627	Q67100-H6066
Pins 7 12 20	Mask Ground Select. Pin P1	Select. Pin P0 Mask Y4	Select. Pin P0 Mask Y4	Select. Pin P0 Mask Select. Pin P1
Keyboard 123	(MUTE)	(MUTE)	(A) (M)	M
456 789 *0 <i>#</i>	(S) (Set) (W) (Redial) (R) (Flashing and Grounding)	B R (Redial) C P (Pause) D F (Flashing)	(B) (R) (C) (C) (P) (D) (F)	(R) (P) (F)
Memory (digits)	LNR (22) Cyclic (8)	LNR (32) Cyclic (8)	LNR (32) Cyclic (8)	LNR (22) SNR (22) Cyclic (8)
Redial	W → LNR	⊕→LNR	$\mathbb{R} \rightarrow LNR$ $\mathbb{R} \rightarrow LNR$ $\mathbb{R} - M + \mathbb{R} - M$	
Manual Pause		P	P	P
Autom. Pause Pulse Mode Location	max 2 any	max 2 between first 3 digits	max 2 between first 3 digits	max 2 between first 3 digits
Generation Time DTMF Mode Location	10 ms max 1 any	10 ms max 2 between first 3 digits	10 ms max 2 between first 3 digits	10 ms max 2 between first 3 digits
Generation Time	1000 ms	800 ms	800 ms	800 ms

Change Dialing Mode via Keyboard

Default PD→DTMF	(S)*(S)	⊙ or M+F	• or M+F
Back to PD	R	F or M+F	F or M+F
Default DTMF→PD	not possible	M + F	(M) + (F)
Back to DTMF		M + F	M + F

Timing Parameters of the Present Versions

Timing of the PSB 8510-1

Signaling key

Flash (t_{FL1}) : 80 ms Flash pause (t_{FLP1}) : 420 ms Flash (t_{FL2}): 80 ms Flash pause (t_{FLP2}) : 970 ms Line grounding (t_{LG1}) : 450 ms Line grounding pause (t_{LGP1}) : 50 ms Line grounding (t_{LG2}) : 1000 ms Line grounding pause/ (t_{LGP2}) : 50 ms

Pulse-dialing (PD)

Dialing Frequency: 10 Hz Interdigital pause (t_{IDP}) : 820 ms

Tone dialing (DTMF)

Minimum sending time (t_{DTMF}): 90 ms Interdigital pause (t_{DIDP}): 90 ms

Selecting Pins P1 (20)	P2 (9)	Default Dialing Mode	Break/Make Ratio $t_{\rm s}/t_{\rm M}$ (ms)	Access Pause t _{AP} /s	Automatic Pause	
0	0	PD	60/40		no	
Х	0	PD	60/40	3	yes	
1	0	PD	60/40	1.8	yes	
0	1	PD	66.7/33.3	_	no	
х	1	PD	66.7/33.3	3	yes	
1	1	PD	66.7/33.3	1.8	yes	
0	х	DTMF	_	_	no	
х	x	DTMF	-	3	yes	
1	x	DTMF	_	1.8	ves	

 $0 = Pin connected to V_{SS}$

1 = Pin connected to V_{DD}

x = Pin not connected

Timings of the PSB 8510-2 and the PSB 8510-4

	PSB 8510-2	PSB 8510-4
Signaling Key		
Flash	$t_{\rm FL} = 600 \mathrm{ms}$	$t_{FL} = 80 \text{ ms}$
Flash pause	$t_{FL} = 600 \text{ ms}$ $t_{FLP} = 500 \text{ ms}$	$t_{FLP} = 1020 \text{ ms}$
Pulse dialing Dialing frequency	10 Hz t _{IDP} = 840 ms	10 Hz t _{IDP} = 840 ms
Interdigital pause Tone dialing	1 DP = 040 M3	10p = 040 mo
Min. sending time	t = 80 ms	tomus = 80 ms
Interdigital pause	$t_{\text{DTMF}} = 80 \text{ ms}$ $t_{\text{DIDP}} = 80 \text{ ms}$	$t_{\text{DTMF}} = 80 \text{ ms}$ $t_{\text{DIDP}} = 80 \text{ ms}$

Selecting Pins		Default Dialing	Break/ Make	Access Pause	Automatic Pause	Access Pause	Automatic Pause
P0 (7)	P2 (9)	Mode	Ratio t _B /t _M (ms)	t _{AP} /s		t _{AP} /s	
X	0	PD	66.7/33.3	4	no		no
0	0	PD	66.7/33.3	4	yes	6	yes
1	0	PD	66.7/33.3	3	yes	3	yes
(X	PD ·	60/40	4	no		no
)	x	PD	60/40	4	yes	6	yes
1	x	PD	60/40	3	yes	3	yes
(1	DTMF		4	no	İ	no
)	1	DTMF		4	yes	6	yes
l	1	DTMF		3	yes	3	yes

 $[\]begin{array}{l} 0 \ = \ \text{Pin connected to} \ \textit{V}_{\text{SS}} \\ 1 \ = \ \text{Pin connected to} \ \textit{V}_{\text{DD}} \end{array}$

x = Pin not connected

Timing of the PSB 8510-6

Signaling Key

Flash (t_{FL}):

see table

Flash pause (t_{FLP}):

50 ms

Pulse dialing (PD)

Dialing frequency:

see table

Interdigital pause (t_{IDP}) :

see table

Tone dialing (DTMF)

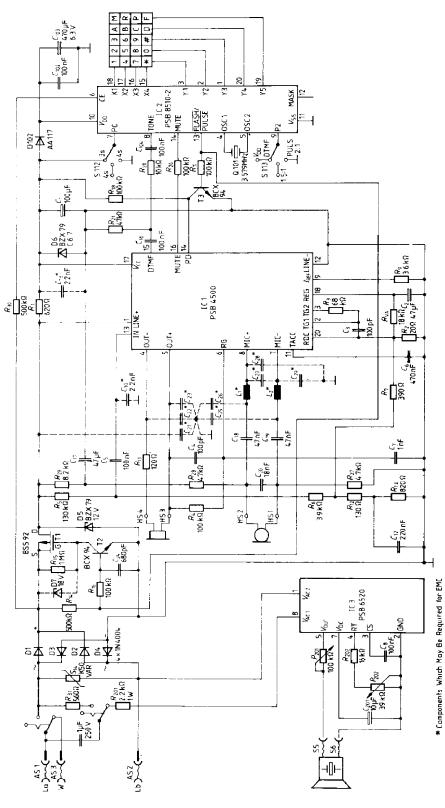
Minimum sending time (t_{DTMF}) :

90 ms

Interdigital pause (t_{DIDP}):

90 ms

Access pause (t_{AP}) after flash:


500 ms

Access pause changing dial mode:

4 s

	Selecting Pins		Default Dialing Mode	PD Frequency	Break/ Make Ratio	PD Inter- digital	Flash t _{FL} (ms) PD DTMF		Automatic Pause	
P0 (7)	P2 (9)	P1 (20)		(Hz)	(ms)	Pause 4 _{DP} (ms)	PU	DTMF	PD	DTMF
X	X	X	DTMF	10	66.7:33.3	800	300	80	no	yes
X	1	X	DTMF	10	66.7:33.3	800	300	80	no	no
1	X	X	PD	10	66.7:33.3	800	555	00	no	no
1	1	x	PD	10	66.7:33.3	800			yes	no
Х	0	X	PD	10	60:40	800			no	no
0	X	X	PD	10	60:40	800			ves	по
0	0	X	PD	16	60:40	500			-	
0	1	X	PD	18	60:40	440			yes	no
1	0	X	PD	16	66.7:33.3	500			yes	no
X	X	1	DTMF	10	66.7:33.3	800	300	120	yes	no
X	1	1	DTMF	10	66.7:33.3	800	300	120	1	no
1	Х	1	DTMF	10	66.7:33.3	800	300	180	no	yes
1	1	1	DTMF	10	66.7:33.3	800	300	180	no	по
X	0	1	PD	10	66.7:33.3	800	300	100	no	yes
0	х	1	PD	10	66.7:33.3	800			no	no
0	0	1	PD	20	66.7:33.3	400	İ		yes	no
0	1	1	PD	20	66.7:33.3	400	1		no	no
1	0	1	PD	10	60:40	800			yes	no
X	X	0	DTMF	10	66.7:33.3	800	300	300	yes	no
х	1	0	DTMF	10	66.7:33.3	800	300		no	no
1	X	Ō	PD	10	66.7:33.3	800	300	300	no	yes
1	1	0	PD	10	66.7:33.3	800			no	no
х	0	Ö.	PD	16	66.7:33.3	500			yes	no
0	x	0	PD	10	60:40	800			yes	no
0	Ô	o l	PD	10	60:40	800			no	no
Ō	1	ŏ	PD	16	60:40				yes	по
1	ò	ŏ	PD	18	60:40	500			yes	no
<u>. </u>					00.40	440	İ		yes	ΠO

Application Circuit (Example)

Siemens Aktiengesellschaft

886