

IRFM250 2N7225

MECHANICAL DATA Dimensions in mm (inches)

TO-254AA – Isolated Metal Package

Pin 3 - Gate Pin 1 – Drain Pin 2 - Source

N–CHANNEL POWER MOSFET

V _{DSS}	200V
I _{D(cont)}	27.4A
R _{DS(on)}	0.100Ω

FEATURES

- N–CHANNEL MOSFET
- HIGH VOLTAGE
- INTEGRAL PROTECTION DIODE
- HERMETIC ISOLATED TO-254 PACKAGE
- SIDE TAB & TABLESS PACKAGE **OPTIONS AVAILABLE**
- SCREENING OPTIONS AVAILABLE

ABSOLUTE MAXIMUM RATINGS (T_C = 25°C unless otherwise stated)

V _{GS}	Gate – Source Voltage		±20V		
I _D	Continuous Drain Current $@V_{GS} = 10V$, $T_C = 25^{\circ}C$		27.4A		
		@ V _{GS} = 10V , T _C = 100°C	17A		
I _{DM}	Pulsed Drain Current		110A		
P _D	Max. Power Dissipation	@ T _C = 25°C	150W		
	Linear Derating Factor		1.2W / °C		
۱ _L	Avalanche Current , Clamped ¹	27.4A			
dv / dt	Peak Diode Recovery ²	5.5V / ns			
$R_{ extsf{ heta}JC}$	Thermal Resistance Junction – Case		0.83°C / W		
$R_{ extsf{ heta}JA}$	Thermal Resistance Junction – Ambient		48°C / W		
$R_{\theta CS}$	Thermal Resistance Case – Sink		0.21°C / W typ.		
T_J , T_STG	Operating Junction and Storage Temperature Range		–55 to 150°C		
ΤL	Lead Temperature (1.6mm from c	300°C			

1)

 V_{DD} = 25V , Starting T_J = 25°C , $L \ge 1mH$, R_G = 25 Ω , Peak I_L = 27.4A I_{SD} $\le 27.4A$, di/dt $\le 190A$ / μS , $V_{DD} \le BV_{DSS}$, $T_J \le 150^\circ C$, Suggested R_G = 2.35 Ω 2)

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.

IRFM250 2N7225

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise stated)

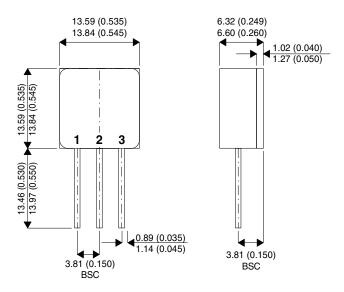
	Parameter	Test Cond	litions	Min.	Тур.	Max.	Unit	
	STATIC ELECTRICAL RATINGS	•				I	<u> </u>	
BV _{DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0$	I _D = 1mA	200			V	
ΔBV_{DSS}	Temperature Coefficient of	Reference to 2	5°C		0.00		V/°C	
ΔT_{J}	Breakdown Voltage	$I_D = 1mA$		0.28		V/ C		
R _{DS(on)}	Static Drain – Source On–State Resistance ²	$V_{GS} = 10V$	I _D = 17A			0.100	0	
		$V_{GS} = 10V$	I _D = 27.4A			0.105	- Ω	
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250μA	2		4	V	
9 _{fs}	Forward Transconductance ²	$V_{DS} \ge 15V$	I _{DS} = 17A	9			S(Ω)	
	Zero Gate Voltage Drain Current	$V_{GS} = 0$	$V_{DS} = 0.8BV_{DSS}$			25	μΑ	
I _{DSS}			T _J = 125°C			250		
I _{GSS}	Forward Gate – Source Leakage	V _{GS} = 20V				100		
	Reverse Gate – Source Leakage	$V_{GS} = -20V$			-100	- nA		
	DYNAMIC CHARACTERISTICS	1				1	<u> </u>	
C _{iss}	Input Capacitance	V 0			3500			
C _{oss}	Output Capacitance	$V_{GS} = 0$			700		- pF	
C _{rss}	Reverse Transfer Capacitance	-	- V _{DS} = 25V		110			
C _{DC}	Drain – Case Capacitance	- f = 1MHz -			12			
Qg	Total Gate Charge	$V_{GS} = 10V$		55		115		
Q _{gs}	Gate – Source Charge	I _D = 27.4A		8		22	nC	
Q _{gd}	Gate – Drain ("Miller") Charge	$V_{DS} = 0.5BV_{DS}$	= 0.5BV _{DSS}			60		
t _{d(on)}	Turn– On Delay Time	V 400V				35		
t _r	Rise Time	$V_{DD} = 100V$	Vgs = 10V			190	- ns	
t _{d(off)}	Turn-Off Delay Time					170		
t _f	Fall Time	- R _G = 2.35Ω				130		
	SOURCE – DRAIN DIODE CHARAC		I				<u> </u>	
I _S	Continuous Source Current					27.4		
I _{SM}	Pulse Source Current ¹					110	- A	
	Diode Forward Voltage ²	I _S = 27.4A	T _J = 25°C			1.9	v	
		$V_{GS} = 0$				1.9	V I	
t _{rr}	Reverse Recovery Time ²	I _F = 27.4A	T _J = 25°C			950	ns	
Q _{rr}	Reverse Recovery Charge ²	$d_i / d_t \le 100 \text{A}/\mu$.s V _{DD} ≤ 50V			9.0	μC	
t _{on}	Forward Turn–On Time				Negligible	}		
	PACKAGE CHARACTERISTICS	•					•	
L _D	Internal Drain Inductance Measured from	1 6mm down drain lead		8.7		– nH		
L _S	Internal Source Inductance Measured fro	om 6mm down source		8.7				

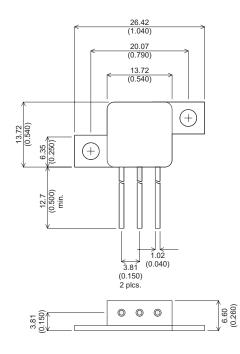
1) Repetitive Rating – Pulse width limited by Maximum Junction Temperature

2) Pulse Test: Pulse Width \leq 300µs, $\delta \leq$ 2%.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612.


E-mail: <u>sales@semelab.co.uk</u>


IRFM250 2N7225

PACKAGE OPTIONS

TABLESS

SIDE TAB

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk

Document Number 3351 Issue 2