18Mb B-die Sync. SRAM Specification

100TQFP with Pb & Pb-Free (RoHS compliant)

INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS, AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,

TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL INFORMATION IN THIS DOCUMENT IS PROVIDED

ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.

1. For updates or additional information about Samsung products, contact your nearest Samsung office.

2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar applications where Product failure could result in loss of life or personal or physical harm, or any military or defense application, or any governmental procurement to which special terms or provisions may apply.

* Samsung Electronics reserves the right to change products or specification without notice.

Document Title

512Kx36 & 1Mx18-Bit Synchronous Pipelined Burst SRAM

Revision History

<u>Rev. No.</u>	History	Draft Date	<u>Remark</u>
0.0	1. Initial draft	Mar. 23. 2004	Advance
0.1	1. Update the DC current spec(Icc, IsB)	May. 21, 2004	Preliminary
0.2	1. Change the ISB,ISB1,ISB2 - ISB ; from 120mA to 170mA - ISB1 ; from 80mA to 150mA - ISB2 ; from 80mA to 130mA	Sep. 21. 2004	Preliminary
0.3	1. Remove the 1.8V Vdd voltage level	Oct. 18, 2004	Preliminary
0.4	1. Remove the -16 speed bin	Jan. 04, 2005	Preliminary
1.0	1. Finalize the datasheet	July 18, 2005	Final

18Mb SB/SPB Synchronous SRAM Ordering Information

Org.	Part Number	Mode	VDD	Speed SB ; Access Time(ns) SPB ; Cycle Time(MHz)	PKG	Temp
	K7B161835B-Q(P)C(I)75	SB	3.3/2.5	7.5ns		С
1Mx18	K7A161830B-Q(P)C(I)25/16	SPB(2E1D)	3.3/2.5	250/167MHz	Q : 100TQFP	; Commercial Temp.Range
	K7A161831B-Q(P)C(I)20	SPB(2E2D)	3.3/2.5	200MHz		Temp.Range
	K7B163635B-Q(P)C(I)75	SB	3.3/2.5	7.5ns	P : Lead free	1
512Kx36	K7A163630B-Q(P)C(I)25/16	SPB(2E1D)	3.3/2.5	250/167MHz	100TQFP	; Industrial Temp.Range
	K7A163631B-Q(P)C(I)20	SPB(2E2D)	3.3/2.5	200MHz		· · · · · · · · · · · · · · · · · · ·

512Kx36 & 1Mx18-Bit Synchronous Pipelined Burst SRAM

FEATURES

- Synchronous Operation.
- 2 Stage Pipelined operation with 4 Burst.
- On-Chip Address Counter.
- Self-Timed Write Cycle.
- On-Chip Address and Control Registers.
- VDD= 2.5 or 3.3V +/- 5% Power Supply.
- 5V Tolerant Inputs Except I/O Pins.
- Byte Writable Function.
- Global Write Enable Controls a full bus-width write.
- Power Down State via ZZ Signal.
- LBO Pin allows a choice of either a interleaved burst or a linear burst.
- Three Chip Enables for simple depth expansion with No Data Contention ; 2cycle Enable, 2cycle Disable.
- Asynchronous Output Enable Control.
- ADSP. ADSC. ADV Burst Control Pins.
- TTL-Level Three-State Output.
- 100-TQFP-1420A Package (Lead and Lead free package)
- Operating in commeical and industrial temperature range.

FAST ACCESS TIMES

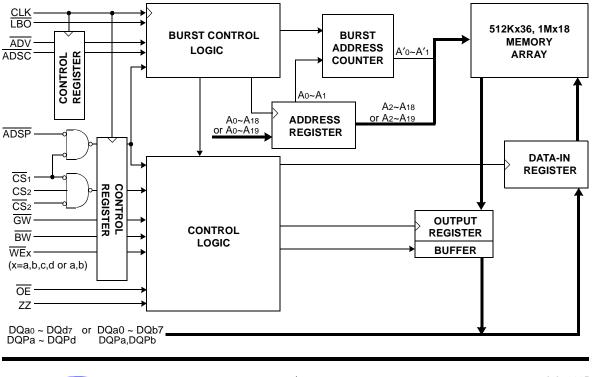
LOGIC BLOCK DIAGRAM

PARAMETER	Symbol	-20	Unit
Cycle Time	tCYC	5.0	ns
Clock Access Time	tCD	3.1	ns
Output Enable Access Time	tOE	3.1	ns

GENERAL DESCRIPTION

The K7A163631B and K7A161831B are 18,874,368-bit Synchronous Static Random Access Memory designed for high performance second level cache of Pentium and Power PC based System.

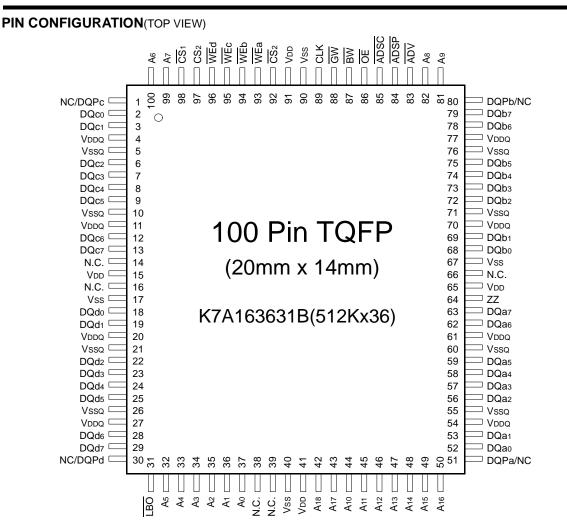
It is organized as 512K(1M) words of 36(18) bits and integrates address and control registers, a 2-bit burst address counter and added some new functions for high performance cache RAM applications; \overline{GW} , \overline{BW} , \overline{LBO} , ZZ. Write cycles are internally self-timed and synchronous.


Full bus-width write is done by \overline{GW} , and each byte write is performed by the combination of \overline{WEx} and \overline{BW} when \overline{GW} is high. And with $\overline{CS_1}$ high, \overline{ADSP} is blocked to control signals.

Burst cycle can be initiated with either the address status processor(ADSP) or address status cache controller(ADSC) inputs. Subsequent burst addresses are generated internally in the system's burst sequence and are controlled by the burst address advance(ADV) input.

LBO pin is DC operated and determines burst sequence(linear or interleaved).

ZZ pin controls Power Down State and reduces Stand-by current regardless of CLK.

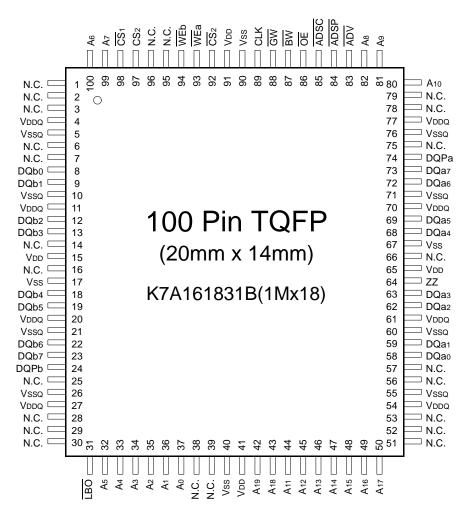

The K7A163631B and K7A161831B are fabricated using SAM-SUNG's high performance CMOS technology and is available in a 100pin TQFP package. Multiple power and ground pins are utilized to minimize ground bounce.

SAMSUNG

K7A163631B K7A161831B

512Kx36 & 1Mx18 Synchronous SRAM

PIN NAME


SYMBOL	PIN NAME	TQFP PIN NO.	SYMBOL	PIN NAME	TQFP PIN NO.
A0 - A18	Address Inputs	32,33,34,35,36,37,42	Vdd	Power Supply(+3.3V)	15,41,65,91
		43,44,45,46,47,48,49	Vss	Ground	17,40,67,90
		50,81,82,99,100			
ADV	Burst Address Advance	83	N.C.	No Connect	14,16,38,39,66
ADSP	Address Status Processor	84			
ADSC	Address Status Controller	85	DQao~a7	Data Inputs/Outputs	52,53,56,57,58,59,62,63
CLK	Clock	89	DQb0~b7		68,69,72,73,74,75,78,79
CS1	Chip Select	98	DQc0~c7		2,3,6,7,8,9,12,13
CS ₂	Chip Select	97	DQdo~d7		18,19,22,23,24,25,28,29
CS ₂	Chip Select	92	DQPa~Pd		51,80,1,30
WEx(x=a,b,c,d)	Byte Write Inputs	93,94,95,96	or N.C		
OE	Output Enable	86			
GW BW	Global Write Enable	88	Vddq	Output Power Supply	4,11,20,27,54,61,70,77
BW	Byte Write Enable	87		(3.3V or 2.5V)	
ZZ	Power Down Input	64	Vssq	Output Ground	5,10,21,26,55,60,71,76
LBO	Burst Mode Control	31			

Note: 1. Ao and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

512Kx36 & 1Mx18 Synchronous SRAM

PIN CONFIGURATION(TOP VIEW)

PIN NAME

SYMBOL	PIN NAME	TQFP PIN NO.	SYMBOL	PIN NAME	TQFP PIN NO.
A0 - A19	Address Inputs	32,33,34,35,36,37,42	Vdd	Power Supply(+3.3V)	15,41,65,91
		43,44,45,46,47,48,49	Vss	Ground	17,40,67,90
		50 80,81,82,99,100			
ADV	Burst Address Advance	83	N.C.	No Connect	1,2,3,6,7,14,16,25,28,29
ADSP	Address Status Processor	84			30,38,39,51,52,53,56,57
ADSC	Address Status Controller	85			66,75,78,79,95,96
CLK	Clock	89			
CS1	Chip Select	98	DQao ~ a7	Data Inputs/Outputs	58,59,62,63,68,69,72,73
CS ₂	Chip Select	97	DQb0 ~ b7		8,9,12,13,18,19,22,23
CS ₂	Chip Select	92	DQPa, Pb		74,24
WEx(x=a,b)	Byte Write Inputs	93,94			
OE	Output Enable	86	VDDQ	Output Power Supply	4,11,20,27,54,61,70,77
GW	Global Write Enable	88		(3.3V or 2.5V)	
BW	Byte Write Enable	87	Vssq	Output Ground	5,10,21,26,55,60,71,76
ZZ LBO	Power Down Input	64			
LBO	Burst Mode Control	31			

Note : 1. Ao and A1 are the two least significant bits(LSB) of the address field and set the internal burst counter if burst is desired.

FUNCTION DESCRIPTION

The K7A163631B and K7A161831B are synchronous SRAM designed to support the burst address accessing sequence of the Power PC based microprocessor. All inputs (with the exception of OE, LBO and ZZ) are sampled on rising clock edges. The start and duration of the burst access is controlled by ADSC, ADSP and ADV and chip select pins.

The accesses are enabled with the chip select signals and output enabled signals. Wait states are inserted into the access with $\overline{\text{ADV}}$. When ZZ is pulled high, the SRAM will enter a Power Down State. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM normally operates after 2cycles of wake up time. ZZ pin is pulled down internally.

Read cycles are initiated with ADSP (regardless of WEx and ADSC) using the new external address clocked into the on-chip address register whenever ADSP is sampled low, the chip selects are sampled active, and the output buffer is enabled with OE. In read operation the data of cell array accessed by the current address, registered in the Data-out registers by the positive edge of CLK, are carried to the Data-out buffer by the next positive edge of CLK. The data, registered in the Data-out buffer, are projected to the output pins. ADV is ignored on the clock edge that samples ADSP asserted, but is sampled on the subsequent clock edges. The address increases internally for the next access of the burst when WEx are sampled High and ADV is sampled low. And ADSP is blocked to control signals by disabling CS1.

All byte write is done by \overline{GW} (regaedless of \overline{BW} and \overline{WEx} .), and each byte write is performed by the combination of \overline{BW} and \overline{WEx} when \overline{GW} is high.

Write cycles are performed by disabling the output buffers with \overline{OE} and asserting \overline{WEx} . \overline{WEx} are ignored on the clock edge that samples \overline{ADSP} low, but are sampled on the subsequent clock edges. The output buffers are disabled when \overline{WEx} are sampled Low(regaedless of \overline{OE}). Data is clocked into the data input register when \overline{WEx} sampled Low. The address increases internally to the next address of burst, if both \overline{WEx} and \overline{ADV} are sampled Low. Individual byte write cycles are performed by any one or more byte write enable signals(\overline{WEa} , \overline{WEb} , \overline{WEc} or \overline{WEd}) sampled low. The \overline{WEa} control DQao ~ DQa7 and DQPa, \overline{WEb} controls DQbo ~ DQb7 and DQPb, \overline{WEc} controls DQco ~ DQc7 and DQPc, and \overline{WEd} control DQdo ~ DQd7 and DQPd. Read or write cycle may also be initiated with \overline{ADSC} , instead of \overline{ADSP} . The differences between cycles initiated with \overline{ADSC} and \overline{ADSP} as are follows;

ADSP must be sampled high when ADSC is sampled low to initiate a cycle with ADSC.

WEx are sampled on the same clock edge that sampled ADSC low(and ADSP high).

Addresses are generated for the burst access as shown below, The starting point of the burst sequence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state of the LBO pin. When this pin is Low, linear burst sequence is selected. When this pin is High, Interleaved burst sequence is selected.

LBO PIN	HIGH	Cas	Case 1		Case 2		Case 3		Case 4	
	mon	A 1	Ao							
Fi	rst Address	0	0	0	1	1	0	1	1	
		0	1	0	0	1	1	1	0	
	\checkmark	1	0	1	1	0	0	0	1	
For	urth Address	1	1	1	0	0	1	0	0	

BURST SEQUENCE TABLE

LBO PIN	LOW	Cas	se 1	Cas	se 2	Cas	se 3	Cas	se 4
LDOTIN	LOW	A 1	Ao						
Fi	rst Address	0	0	0	1	1	0	1	1
		0	1	1	0	1	1	0	0
	\downarrow	1	0	1	1	0	0	0	1
Fou	urth Address	1	1	0	0	0	1	1	0

Note : 1. LBO pin must be tied to High or Low, and Floating State must not be allowed.

ASYNCHRONOUS TRUTH TABLE

OPERATION	ZZ	OE	I/O Status
Sleep Mode	н	Х	High-Z
Read	L	L	DQ
Reau	L	н	High-Z
Write	L	Х	Din, High-Z
Deselected	L	Х	High-Z

Notes

1. X means "Don't Care".

- 2. ZZ pin is pulled down internally
- For write cycles that following read cycles, the output buffers must be disabled with OE, otherwise data bus contention will occur.
 Sleep Mode means power down state of which stand-by current does
- Steep Mode means power down state of which stand-by current does not depend on cycle time.
- 5. Deselected means power down state of which stand-by current depends on cycle time.

(Interleaved Burst)

(Linear Burst)

TRUTH TABLES

SYNCHRONOUS TRUTH TABLE

CS ₁	CS2	CS ₂	ADSP	ADSC	ADV	WRITE	CLK	ADDRESS ACCESSED	Operation
Н	Х	Х	Х	L	Х	X	\uparrow	N/A	Not Selected
L	L	Х	L	Х	Х	X	\uparrow	N/A	Not Selected
L	Х	н	L	Х	Х	X	\uparrow	N/A	Not Selected
L	L	Х	Х	L	Х	X	\uparrow	N/A	Not Selected
L	Х	н	Х	L	Х	Х	\uparrow	N/A	Not Selected
L	н	L	L	Х	Х	X	\uparrow	External Address	Begin Burst Read Cycle
L	н	L	н	L	Х	L	\uparrow	External Address	Begin Burst Write Cycle
L	н	L	н	L	Х	н	\uparrow	External Address	Begin Burst Read Cycle
Х	Х	Х	н	Н	L	н	↑	Next Address	Continue Burst Read Cycle
Н	Х	Х	Х	Н	L	Н	\uparrow	Next Address	Continue Burst Read Cycle
Х	Х	Х	н	Н	L	L	\uparrow	Next Address	Continue Burst Write Cycle
н	Х	Х	Х	Н	L	L	\uparrow	Next Address	Continue Burst Write Cycle
Х	Х	Х	н	н	н	н	\uparrow	Current Address	Suspend Burst Read Cycle
н	Х	Х	Х	Н	н	н	Ŷ	Current Address	Suspend Burst Read Cycle
Х	Х	Х	Н	Н	Н	L	\uparrow	Current Address	Suspend Burst Write Cycle
Н	Х	Х	Х	Н	н	L	\uparrow	Current Address	Suspend Burst Write Cycle

Notes: 1. X means "Don't Care".

2. The rising edge of clock is symbolized by $\uparrow.$

3. $\overline{\text{WRITE}}$ = L means Write operation in WRITE TRUTH TABLE.

WRITE = H means Read operation in WRITE TRUTH TABLE.

4. Operation finally depends on status of asynchronous input pins(ZZ and OE).

WRITE TRUTH TABLE(x36)

GW	BW	WEa	WEb	WEc	WEd	OPERATION
Н	н	Х	Х	Х	Х	READ
Н	L	н	н	н	н	READ
Н	L	L	Н	Н	Н	WRITE BYTE a
Н	L	н	L	н	н	WRITE BYTE b
Н	L	н	н	L	L	WRITE BYTE c and d
Н	L	L	L	L	L	WRITE ALL BYTES
L	X	Х	Х	Х	Х	WRITE ALL BYTES

Notes : 1. X means "Don't Care".

2. All inputs in this table must meet setup and hold time around the rising edge of $\mathsf{CLK}(\uparrow).$

WRITE TRUTH TABLE(x18)

GW	BW	WEa	WEb	OPERATION
Н	н	Х	х	READ
н	L	Н	Н	READ
н	L	L	Н	WRITE BYTE a
н	L	Н	L	WRITE BYTE b
Н	L	L	L	WRITE ALL BYTEs
L	х	Х	Х	WRITE ALL BYTEs

Notes: 1. X means "Don't Care".

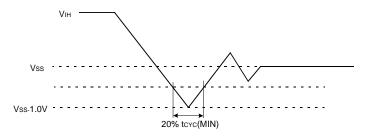
2. All inputs in this table must meet setup and hold time around the rising edge of $\mathsf{CLK}(\uparrow)$.

ABSOLUTE MAXIMUM RATINGS*

PARAMETER		SYMBOL	RATING	UNIT
Voltage on VDD Supply Relative to Vss		Vdd	-0.3 to 4.6	V
Voltage on VDDQ Supply Relative to Vss		Vddq	Vdd	V
Voltage on Input Pin Relative to Vss		Vin	-0.3 to VDD+0.3	V
Voltage on I/O Pin Relative to Vss		Vio	-0.3 to VDDQ+0.3	V
Power Dissipation		PD	1.6	W
Storage Temperature		Тѕтс	-65 to 150	°C
	Commercial	Topr	0 to 70	°C
Operating Temperature Industrial		Topr	-40 to 85	°C
Storage Temperature Range Under Bias	TBIAS	-10 to 85	°C	

*Note : Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING CONDITIONS ($0^{\circ}C \le TA \le 70^{\circ}C$)


PARAMETER	SYMBOL	MIN	Тур.	MAX	UNIT
Supply Voltage	VDD1	2.375	2.5	2.625	V
	VDDQ1	2.375	2.5	2.625	V
	Vdd2	3.135	3.3	3.465	V
	VDDQ2	3.135	3.3	3.465	V
Ground	Vss	0	0	0	V

Notes: 1. The above parameters are also guaranteed at industrial temperature range. 2. It should be VDDQ \leq VDD

CAPACITANCE*(TA=25°C, f=1MHz)

PARAMETER	SYMBOL	TEST CONDITION	Min	Max	Unit
Input Capacitance	CIN	VIN=0V	-	5	pF
Output Capacitance	Соит	Vout=0V	-	6	pF

*Note : Sampled not 100% tested.

1.7

VDD+0.3**

SYMBOL NOTES PARAMETER MIN UNIT **TEST CONDITIONS** MAX Input Leakage Current(except ZZ) lı∟ VDD = Max ; VIN=VSS to VDD -2 +2 μΑ -2 **Output Leakage Current** IOL Output Disabled, VOUT=Vss to VDDQ +2 μΑ Device Selected, IOUT=0mA, **Operating Current** Icc -20 _ 340 mΑ $ZZ \le VIL$, Cycle Time $\ge tCYC$ Min Device deselected, IOUT=0mA, ZZ≤VIL, f=Max, -20 170 ISB mΑ All Inputs $\leq 0.2V$ or $\geq VDD-0.2V$ Standby Current Device deselected, Iou⊤=0mA, ZZ≤0.2V, **I**SB1 150 mΑ _ f = 0, All Inputs=fixed (VDD-0.2V or 0.2V) Device deselected, IouT=0mA, ZZ≥VDD-0.2V, ISB2 130 mΑ f=Max, All Inputs≤VIL or ≥VIH Output Low Voltage(3.3V I/O) V IOL=8.0mA 0.4 Vol _ Output High Voltage(3.3V I/O) Vон IOH=-4.0mA 2.4 -V Output Low Voltage(2.5V I/O) V Vol IOL=1.0mA _ 0.4 Output High Voltage(2.5V I/O) V Vон IOH=-1.0mA 2.0 -V Input Low Voltage(3.3V I/O) -0.3* VIL 0.8 nput High Voltage(3.3V I/O) Vн 2.0 VDD+0.3** V Input Low Voltage(2.5V I/O) V VIL -0.3* 0.7

DC ELECTRICAL CHARACTERISTICS

Notes: 1. The above parameters are also guaranteed at industrial temperature range. 2. Reference AC Operating Conditions and Characteristics for input and timing.

Vн

3. Data states are all zero.

4. In Case of I/O Pins, the Max. VIH=VDDQ+0.3V.

TEST CONDITIONS

Input High Voltage(2.5V I/O)

PARAMETER	VALUE	
Input Pulse Level(for 3.3V I/O)	0 to 3.0V	
Input Pulse Level(for 2.5V I/O)	0 to 2.5V	
Input Rise and Fall Time(Measured at 20% to 80% for 3.3/2.5V I/O)	1.0V/ns	
Input and Output Timing Reference Levels for 3.3V I/O	1.5V	
Input and Output Timing Reference Levels for 2.5V I/O	VDDQ/2	
Output Load	See Fig. 1	

* The above parameters are also guaranteed at industrial temperature range.

1,2

3

3

V

K7A163631B K7A161831B

512Kx36 & 1Mx18 Synchronous SRAM

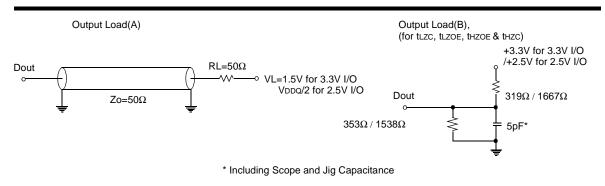
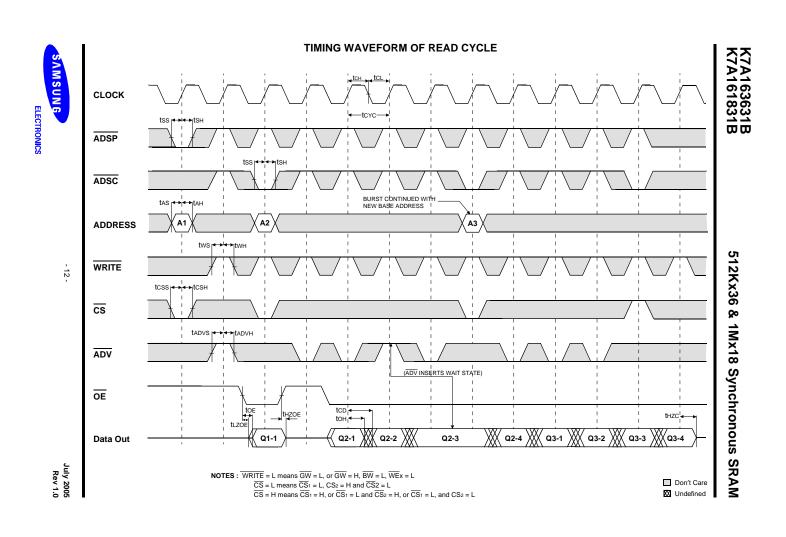
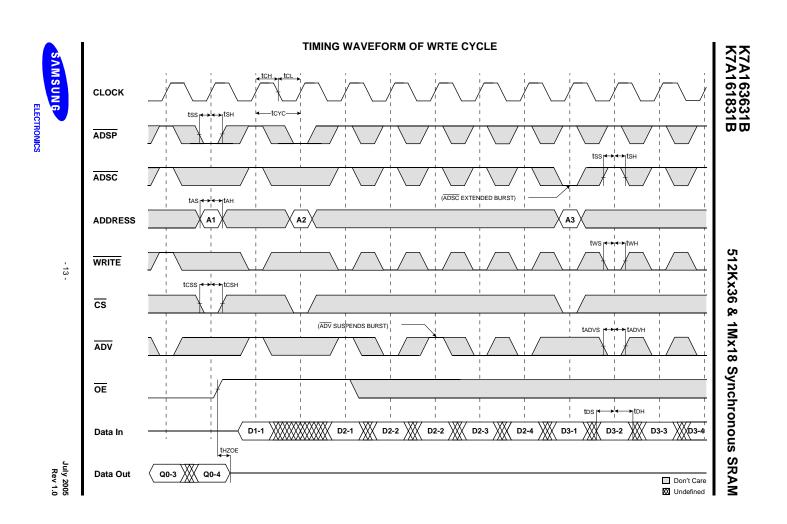


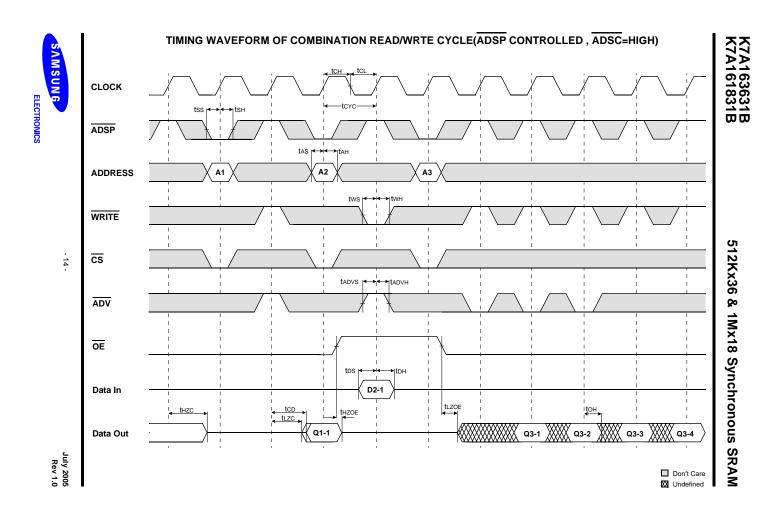
Fig. 1

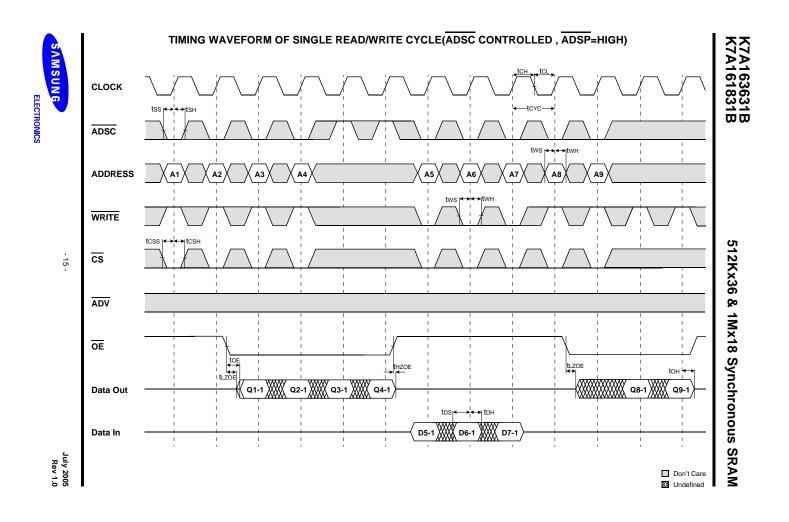
-20 Parameter Symbol Unit MIN MAX Cycle Time tcyc 5.0 _ ns Clock Access Time tcD -3.1 ns Output Enable to Data Valid toe -3.1 ns Clock High to Output Low-Z t∟zc 0 ns Output Hold from Clock High tон 1.5 ns Output Enable Low to Output Low-Z **t**LZOE 0 ns Output Enable High to Output High-Z **t**HZOE -3.0 ns Clock High to Output High-Z 1.5 tHZC 3.0 ns Clock High Pulse Width 2.0 tсн ns Clock Low Pulse Width 2.0 tc∟ _ ns Address Setup to Clock High 1.4 _ tAS ns Address Status Setup to Clock High tss 1.4 ns Data Setup to Clock High 1.4 tDS ns Write Setup to Clock High (GW, BW, WEx) 1.4 tws ns Address Advance Setup to Clock High 1.4 _ **t**ADVS ns Chip Select Setup to Clock High 1.4 tcss ns Address Hold from Clock High tан 0.4 _ ns Address Status Hold from Clock High 0.4 tsн ns Data Hold from Clock High 0.4 _ tDH ns Write Hold from Clock High (GW, BW, WEx) 0.4 _ twн ns Address Advance Hold from Clock High 0.4 **t**ADVH ns Chip Select Hold from Clock High 0.4 tcsH ns ZZ High to Power Down 2 cycle **t**PDS _ ZZ Low to Power Up cycle 2 **t**PUS -

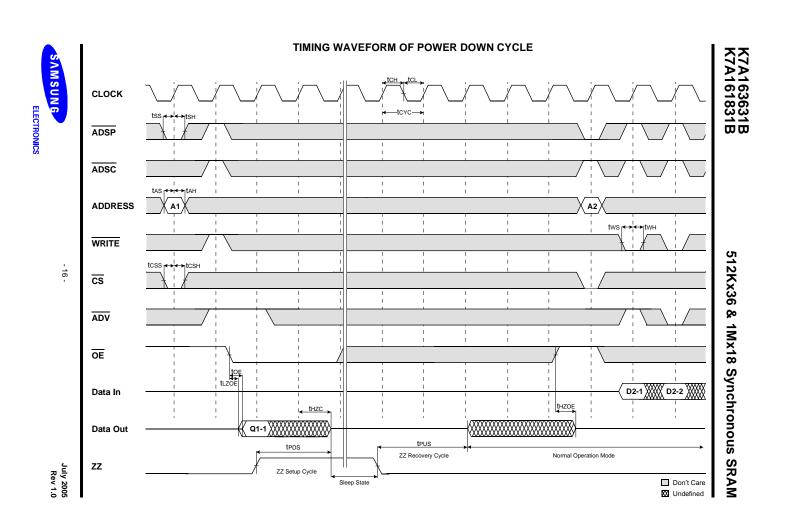
AC TIMING CHARACTERISTICS

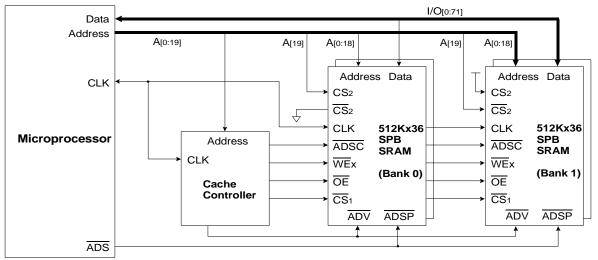

Notes: 1. The above parameters are also guaranteed at industrial temperature range.

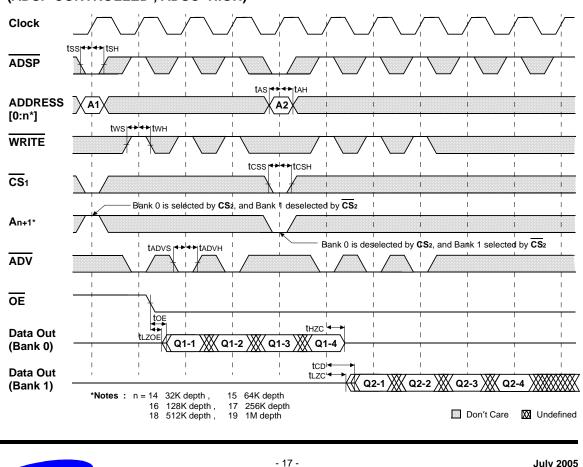

2. <u>All</u> address inputs must meet the specified setup and hold times for all rising clock edges whenever ADSC and/or ADSP is sampled low and CS is sampled low. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.


3. Both chip selects must be active whenever ADSC or ADSP is sampled low in order for the this device to remain enabled.


4. ADSC or ADSP must not be asserted for at least 2 Clock after leaving ZZ state.



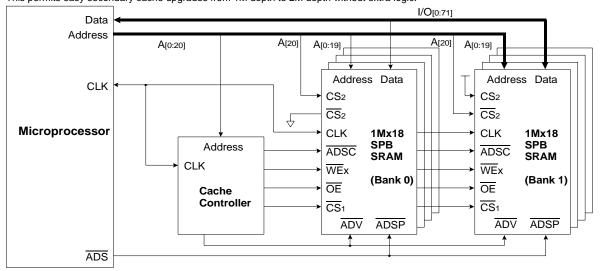



APPLICATION INFORMATION

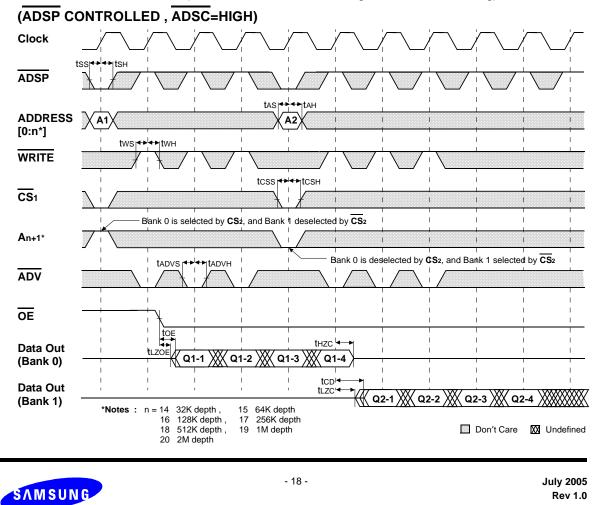
DEPTH EXPANSION

The Samsung 512Kx36 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion. This permits easy secondary cache upgrades from 512K depth to 1M depth without extra logic.

INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing)

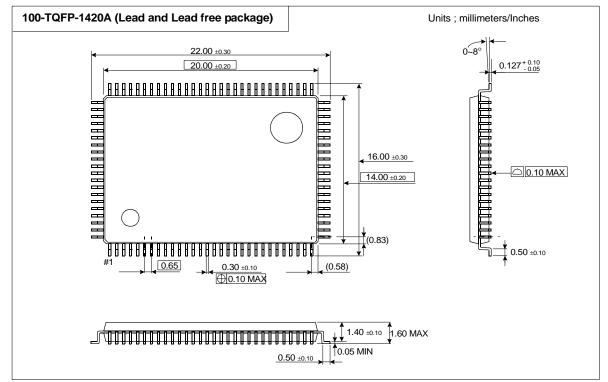


(ADSP CONTROLLED, ADSC=HIGH)


APPLICATION INFORMATION

DEPTH EXPANSION

The Samsung 1Mx18 Synchronous Pipelined Burst SRAM has two additional chip selects for simple depth expansion. This permits easy secondary cache upgrades from 1M depth to 2M depth without extra logic.



INTERLEAVE READ TIMING (Refer to non-interleave write timing for interleave write timing)

ELECTRONICS

PACKAGE DIMENSIONS

