Document Title

128K x16 bit Low Power and Low Voltage CMOS Static RAM

Revision History

<u>Revision No.</u>	<u>History</u>	Draft Data	<u>Remark</u>
0.0	Initial Draft	October 1, 1997	Preliminary
0.1	Revise - Increased operating current(Icc1):20mA $ ightarrow$ 25mA	December 9, 1997	Preliminary
1.0	Finalize	August 27, 1998	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

128K x16 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

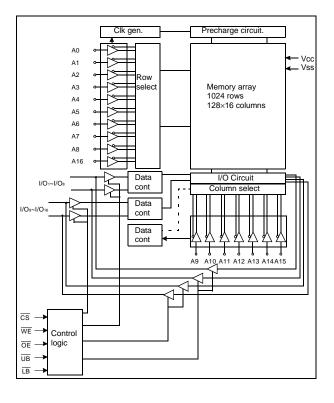
- Process Technology: TFT
- Organization:128Kx16
- Power Supply Voltage: 2.7~3.3V
- Low Data Retention Voltage: 2V(Min)
- Three state output and TTL Compatible
- Package Type: 44-TSOP2 -400F

PRODUCT FAMILY

GENERAL DESCRIPTION

The K6T2016U3M families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature ranges and small package for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

				Power Dissipation			
Product Family	Operating Temperature	Vcc Range	Speed	Standby (Isв1, Max)	Operating (Icc2, Max)	PKG Type	
K6T2016U3M-B	Commercial(0~70°C)	2.7~3.3∨	85 ¹⁾ /100ns	10μΑ	55mA	44-TSOP2-F	
K6T2016U3M-F	Industrial(-40~85°C)	2.1~0.01	00 / 100113	15μΑ	JOINA	44-1001 2-1	


1. The parameter is measured with 30pF test load.

PIN DESCRIPTION

A4 🗖 1 🔿	U	44 A5
A3 2	-	43 A6
A2 3		42 A7
A1 4		41 OE
A0 5		40 UB
CS 6		39 LB
I/O1 7		38 I/O16
I/O2 8		37 I/O15
I/O3 🗌 9		36 I/O14
I/O4 10		35 I/O13
Vcc 11	44-TSOP2	34 Vss
Vss 12	Forward	33 Vcc
I/O5 13	TOIWalu	32 I/O12
I/O6 14		31 I/O11
I/O7 15		30 I/O10
I/O8 16		29 1/09
WE 17		28 N.C
A16 18		27 A8
A15 19		26 A9
A14 20		25 A10
A13 21		24 A11
A12 22		23N.C

Name	Function	Name	Function
CS	Chip Select Input	I/O ₁ ~I/O ₁₆	Data Inputs/Outputs
OE	Output Enable Input	A ₀ ~A ₁₆	Address Inputs
WE	Write Enable Input	Vcc	Power
UB	Upper Block Select Input	Vss	Ground
LB	Lower Block Select Input	N.C	No Connection

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial Temp	perature Products(0~70°C)	Industrial Temperature Products(-40~85°C)			
Part Name Function		Part Name	Function		
K6T2016U3M-TB85 K6T2016U3M-TB10	44-TSOP2, 85ns, 3.0V, LL 44-TSOP2, 100ns, 3.0V, LL	K6T2016U3M-TF85 K6T2016U3M-TF10	44-TSOP2, 85ns, 3.0V, LL 44-TSOP2, 100ns, 3.0V, LL		

Note : LL - Low Low Standby Current

FUNCTIONAL DESCRIPTION

CS	OE	WE	LB	UB	I/O 1~8	I/O 9~16	Mode	Power
н	X ¹⁾	X ¹⁾	X ¹⁾	X ¹⁾	High-Z	High-Z	Deselected	Standby
L	Н	н	X ¹⁾	X ¹⁾	High-Z	High-Z	Output Disabled	Active
L	X ¹⁾	X ¹⁾	Н	Н	High-Z	High-Z	Output Disabled	Active
L	L	Н	L	Н	Dout	High-Z	Lower Byte Read	Active
L	L	Н	Н	L	High-Z	Dout	Upper Byte Read	Active
L	L	Н	L	L	Dout	Dout	Word Read	Active
L	X ¹⁾	L	L	Н	Din	High-Z	Lower Byte Write	Active
L	X ¹⁾	L	Н	L	High-Z	Din	Upper Byte Write	Active
L	X ¹⁾	L	L	L	Din	Din	Word Write	Active

1. X means don't care. (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 4.6	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Tstg	-65 to 150	°C	-
Operating Temperature	Та	0 to 70	°C	K6T2016U3M-L
Operating Temperature	IA	-40 to 85	°C	K6T2016U3M-P
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS¹⁾

ltem	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T2016U3M Family	2.7	3.0	3.3	V
Ground	Vss	All Family	0	0	0	V
Input high voltage	Vін	K6T2016U3M Family	2.2	-	Vcc+0.3	V
Input low voltage	VIL	K6T2016U3M Family	-0.3 ³⁾	-	0.6	V

Note:

1. Commercial Product : $T_A=0$ to $70^{\circ}C$, otherwise specified

Industrial Product : TA=-40 to 85° C, otherwise specified

2. Overshoot : Vcc+2.0V in case of pulse width \leq 20ns

3. Undershoot : -2.0V in case of pulse width $\leq 20 ns$

4. Overshoot and undershoot are sampled, not 100% tested.

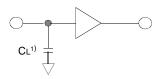
CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Max	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	Vio=0V	-	10	рF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions			Тур	Max	Unit
Input leakage current	L	VIN=Vss to Vcc		-1	-	1	μA
Output leakage current	Ilo	\overline{CS} =VIH or \overline{OE} =VIH or \overline{WE} =VIL, VIO=Vss to VC	С	-1	-	1	μA
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read			-	5	mA
Average operating current	ICC1	Cycle time=1µs, 100% duty, lio=0mA	Read	-	-	5	mA
	ICCI	CS≤0.2V VIN≤0.2V or VIN≥Vcc-0.2V WI		-	-	25	ШA
	ICC2	Cycle time=Min, 100% duty, IIo=0mA, CS=VIL, VIN=VIL or VIH			-	55	mA
Output low voltage	Vol	IOL=2.1mA		-	-	0.4	V
Output high voltage	Vон	Iон=-1.0mA	Іон=-1.0mA			-	V
Standby Current(TTL)	lsв	CS=VIH, Other inputs=VIL or VIH			-	0.3	mA
Standby Current (CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc		-	-	10 ¹⁾	μA


1. K6T2016U3M-I Family =15µA

K6T2016U3M Family

AC OPERATING CONDITIONS

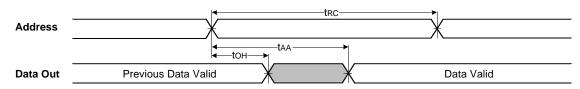
TEST CONDITIONS (Test Load and Test Input/Output Reference) Input pulse level : 0.4 to 2.2V Input rising and falling time : 5ns Input and output reference voltage : 1.5V Output load (See right) :CL=100pF+1TTL CL=30pF+1TTL

1. Including scope and jig capacitance

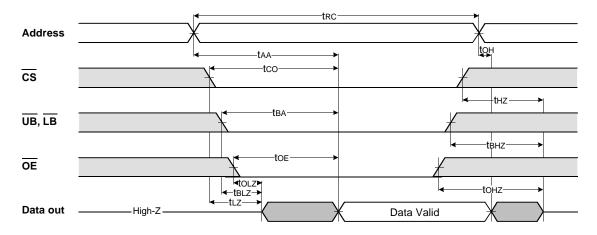
AC CHARACTERISTICS (Vcc=2.7~3.3V, K6T2016U3M-L Family:TA=0 to 70°C, K6T2016U3M-I Family:TA=-40 to 85°C)

				Spee	d Bins		
Parameter List		Symbol	85	¹⁾ ns	10	0ns	Units
			Min	Max	Min	Max	
	Read cycle time	tRC	85	-	100	-	ns
	Address access time	taa	-	85	-	100	ns
	Chip select to output	tco	-	85	-	100	ns
	Output enable to valid output	tOE	-	45	-	55	ns
	Byte enable to valid output	tва	-	45	-	55	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	ns
Reau	Output enable to low-Z output	toLZ	5	-	5	-	ns
	UB, LB enable to low-Z output	tBLZ	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	25	0	30	ns
	UB, LB disable to high-Z output	tвнz	0	25	0	30	ns
	Output disable to high-Z output	tонz	0	25	0	30	ns
	Output hold from address change	tон	15	-	15	-	ns
	Write cycle time	twc	85	-	100	-	ns
	Chip select to end of write	tcw	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	ns
	Address valid to end of write	taw	75	-	80	-	ns
	UB, LB valid to end of write	tвw	75	-	80	-	ns
Write	Write pulse width	tWP	60	-	70	-	ns
	Write recovery time	twr	0	-	0	-	ns
	Write to output high-Z	twнz	0	30	0	30	ns
	Data to write time overlap	tDW	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	ns

1. The parameter is measured with 30pF test load.


DATA RETENTION CHARACTERISTICS

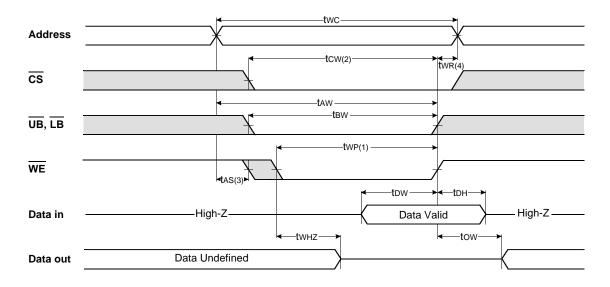
ltem	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.3	V
Data retention current	ldr	Vcc=3.0V, CS≥Vcc-0.2V	-	-	10	μA
Data retention set-up time	tSDR	See data retention waveform	0	-	-	m 0
Recovery time	trdr		5	-	-	ms



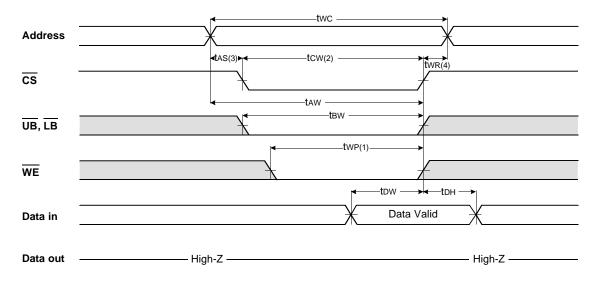
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB or/and LB=VIL)

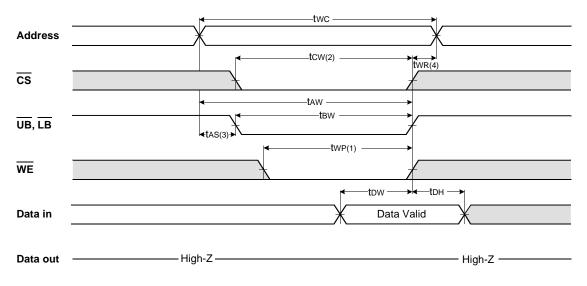
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)

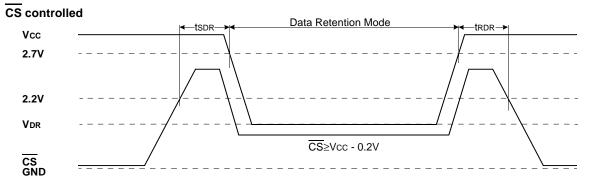

- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

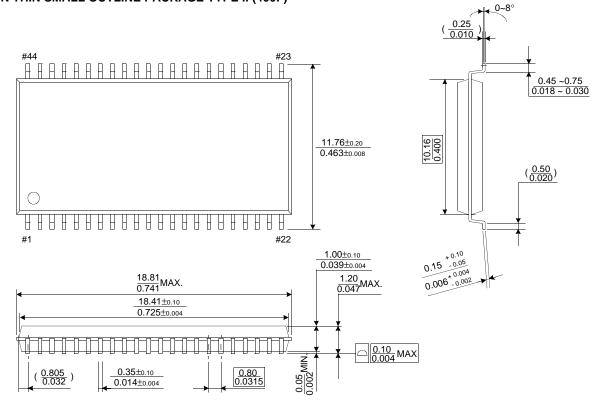


NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of low \overline{CS} and low \overline{WE} . A write begins when \overline{CS} goes low and \overline{WE} goes low with asserting \overline{UB} or \overline{LB} for single byte operation or simultaneously asserting \overline{UB} and \overline{LB} for double byte operation. A write ends at the earliest transition when CS goes high and WE goes high. The twp is measured from the beginning of write to the end of write.
- two is measured from the CS going low to end of write.
 tas is measured from the address valid to the beginning of write.

4. twe is measured from the end or write to the address change. twe applied in case a write ends as CS or WE going high.

DATA RETENTION WAVE FORM


K6T2016U3M Family

CMOS SRAM

PACKAGE DIMENSIONS

Unit: millimeters(inches)

44 PIN THIN SMALL OUTLINE PACKAGE TYPE II (400F)

