# **Document Title**

# 256Kx16 bit Low Power and Low Voltage CMOS Static RAM

# **Revision History**

| <u>Revision No.</u> | <u>History</u>                                  | Draft Date         | <u>Remark</u> |
|---------------------|-------------------------------------------------|--------------------|---------------|
| 0.0                 | Ini <u>tial dra</u> ft<br>- UB/LB power control | July 4, 1998       | Preliminary   |
| 0.01                | Errata correction                               | August 17, 1998    |               |
| 0.1                 | Revise<br>- Add 3,3V product : K6T4016V4C       | September 11, 1998 | Preliminary   |
| 1.0                 | Revise<br>- Specified CSP type.                 | November 16, 1998  | Final         |

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

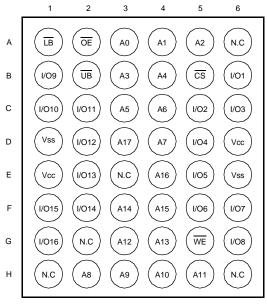


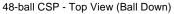
# 256Kx16 bit Low Power and Low Voltage CMOS Static RAM

#### **FEATURES**

- Process Technology: TFT
- Organization: 256K x16
- Power Supply Voltage K6T4016V4C Family: 3.0~3.6V K6T4016U4C Family: 2.7~3.3V
- Low Data Retention Voltage: 2.0V(Min)
- Three state output and TTL Compatible
- Package Type: 48-µBGA-6.10x8.90

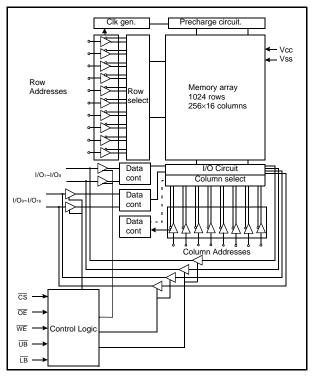
# **PRODUCT FAMILY**


### **GENERAL DESCRIPTION**


The K6T4016V4C, K6T4016U4C families are fabricated by SAMSUNG's advanced CMOS process technology. The families support industrial operating temperature ranges and have chip scale package for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

|                |                       |           |                            | Power Dis              |                          |          |
|----------------|-----------------------|-----------|----------------------------|------------------------|--------------------------|----------|
| Product Family | Operating Temperature | Vcc Range | Speed                      | Standby<br>(Isв1, Max) | Operating<br>(Icc2, Max) | PKG Type |
| K6T4016V4C-F   | Industrial(-40~85°C)  | 3.0~3.6V  | 70 <sup>1)</sup> /85/100ns | 20µA                   | 45mA                     | 48-uBGA  |
| K6T4016U4C-F   |                       | 2.7~3.3V  | 10/03/100115               | 20μΑ                   | HJIIA                    | 40-µBGA  |

1. The parameter is measured with 30pF test load.


#### **PIN DESCRIPTION**





| Name       | Function            | Name | Function            |
|------------|---------------------|------|---------------------|
| CS         | Chip Select Inputs  | Vcc  | Power               |
| OE         | Output Enable Input | Vss  | Ground              |
| WE         | Write Enable Input  | UB   | Upper Byte(I/O9~16) |
| A0~A17     | Address Inputs      | LB   | Lower Byte(I/O1~8)  |
| I/O1~I/O16 | Data Inputs/Outputs | NC   | No Connection       |

# FUNCTIONAL BLOCK DIAGRAM



SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.



### **PRODUCT LIST**

| Industrial Temperature Products(-40~85°C) |                                                 |  |  |  |  |  |
|-------------------------------------------|-------------------------------------------------|--|--|--|--|--|
| Part Name                                 | Function                                        |  |  |  |  |  |
| K6T4016V4C-ZF70                           | 48-µBGA with 0.75mm ball pitch, 70ns, 3.3V, LL  |  |  |  |  |  |
| K6T4016V4C-ZF85                           | 48-μBGA with 0.75mm ball pitch, 85ns, 3.3V, LL  |  |  |  |  |  |
| K6T4016V4C-ZF10                           | 48-μBGA with 0.75mm ball pitch, 100ns, 3.3V, LL |  |  |  |  |  |
| K6T4016U4C-ZF70                           | 48-μBGA with 0.75mm ball pitch, 70ns, 3.0V, LL  |  |  |  |  |  |
| K6T4016U4C-ZF85                           | 48-μBGA with 0.75mm ball pitch, 85ns, 3.0V, LL  |  |  |  |  |  |
| K6T4016U4C-ZF10                           | 48-µBGA with 0.75mm ball pitch, 100ns, 3.0V, LL |  |  |  |  |  |

# FUNCTIONAL DESCRIPTION

| CS              | OE              | WE              | LB              | UB              | <b>I/O</b> 1~8 | <b>I/O</b> 9~16 | Mode             | Power   |
|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|-----------------|------------------|---------|
| Н               | X <sup>1)</sup> | X <sup>1)</sup> | X <sup>1)</sup> | X <sup>1)</sup> | High-Z         | High-Z          | Deselected       | Standby |
| X <sup>1)</sup> | X <sup>1)</sup> | X <sup>1)</sup> | н               | н               | High-Z         | High-Z          | Deselected       | Standby |
| L               | н               | Н               | L               | X <sup>1)</sup> | High-Z         | High-Z          | Output Disabled  | Active  |
| L               | Н               | Н               | X <sup>1)</sup> | L               | High-Z         | High-Z          | Output Disabled  | Active  |
| L               | L               | Н               | L               | Н               | Dout           | High-Z          | Lower Byte Read  | Active  |
| L               | L               | Н               | Н               | L               | High-Z         | Dout            | Upper Byte Read  | Active  |
| L               | L               | Н               | L               | L               | Dout           | Dout            | Word Read        | Active  |
| L               | X <sup>1)</sup> | L               | L               | Н               | Din            | High-Z          | Lower Byte Write | Active  |
| L               | X <sup>1)</sup> | L               | Н               | L               | High-Z         | Din             | Upper Byte Write | Active  |
| L               | X <sup>1)</sup> | L               | L               | L               | Din            | Din             | Word Write       | Active  |

1. X means don't care. (Must be low or high state)

# ABSOLUTE MAXIMUM RATINGS<sup>1)</sup>

| ltem                                  | Symbol   | Ratings         | Unit |
|---------------------------------------|----------|-----------------|------|
| Voltage on any pin relative to Vss    | VIN,VOUT | -0.5 to Vcc+0.5 | V    |
| Voltage on Vcc supply relative to Vss | Vcc      | -0.3 to 4.6     | V    |
| Power Dissipation                     | PD       | 1.0             | W    |
| Storage temperature                   | Тѕтс     | -65 to 150      | °C   |
| Operating Temperature                 | ТА       | -40 to 85       | °C   |

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.



# **RECOMMENDED DC OPERATING CONDITIONS<sup>1)</sup>**

| Item               | Symbol | Product                       | Min                | Тур | Max                   | Unit |
|--------------------|--------|-------------------------------|--------------------|-----|-----------------------|------|
| Supply voltage     | Vcc    | K6T4016V4C Family             | 3.0                | 3.3 | 3.6                   | V    |
|                    | VCC    | K6T4016U4C Family             | 2.7                | 3.0 |                       |      |
| Ground             | Vss    | K6T4016V4C, K6T4016U4C Family | 0                  | 0   | 0                     | V    |
| Input high voltage | Vін    | K6T4016V4C, K6T4016U4C Family | 2.2                | -   | Vcc+0.3 <sup>2)</sup> | V    |
| Input low voltage  | VIL    | K6T4016V4C, K6T4016U4C Family | -0.3 <sup>3)</sup> | -   | 0.6                   | V    |

Note:

1. TA=-40 to  $85^{\circ}$ C, otherwise specified

2. Overshoot: Vcc+2.0V in case of pulse width  $\leq$ 30ns.

Undershoot: -2.0V in case of pulse width ≤30ns.
Overshoot and undershoot are sampled, not 100% tested.

# CAPACITANCE<sup>1)</sup> (f=1MHz, TA=25°C)

| ltem                     | Symbol | Test Condition | Min | Max | Unit |
|--------------------------|--------|----------------|-----|-----|------|
| Input capacitance        | CIN    | VIN=0V         | -   | 8   | pF   |
| Input/Output capacitance | Сю     | Vio=0V         | -   | 10  | pF   |

1. Capacitance is sampled, not 100% tested

# DC AND OPERATING CHARACTERISTICS

| ltem                           | Symbol | Test Conditions                                                                                                                                | Min | Тур | Мах | Unit |
|--------------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Input leakage current          | Iц     | VIL=Vss to Vcc                                                                                                                                 | -1  | -   | 1   | μΑ   |
| Output leakage current         | Ilo    | $\overline{CS}$ =VIH or $\overline{OE}$ =VIH or $\overline{WE}$ =VIL VIO=Vss to Vcc                                                            | -1  | -   | 1   | μΑ   |
| Operating power supply current | Icc    | IIO=0mA, CS=VIL, VIN=VIL or VIH                                                                                                                | -   | -   | 4   | mA   |
| Average operating current      | ICC1   | Cycle time=1µs, 100% duty, lio=0mA CS≤0.2V, Vi№≤0.2V or Vi№≥Vcc-0.2V                                                                           | -   | -   | 6   | mA   |
| Average operating current      | ICC2   | Cycle time=Min, 100% duty, IIO=0mA, CS=VIL, VIN=VIH or VIL                                                                                     | -   | -   | 45  | mA   |
| Output low voltage             | Vol    | IoL=2.1mA                                                                                                                                      | -   | -   | 0.4 | V    |
| Output high voltage            | Vон    | Іон=-1.0mA                                                                                                                                     | 2.2 | -   | -   | V    |
| Standby Current(TTL)           | lsв    | CS=Viн or LB=UB=Viн, Other inputs=Viн or Vi∟                                                                                                   | -   | -   | 0.3 | mA   |
| Standby Current(CMOS)          | ISB1   | $\overline{CS} \ge Vcc-0.2V \text{ or } \overline{LB} = \overline{UB} \ge Vcc-0.2V, \overline{CS} \le 0.2V, \text{ Other inputs} = 0 \sim Vcc$ | -   | -   | 20  | μA   |



# K6T4016V4C, K6T4016U4C Family

# AC OPERATING CONDITIONS

TEST CONDITIONS(Test Load and Input/Output Reference) Input pulse level: 0.4 to 2.2V Input rising and falling time: 5ns Input and output reference voltage:1.5V Output load(see right): CL=100pF+1TTL CL=30pF+1TTL

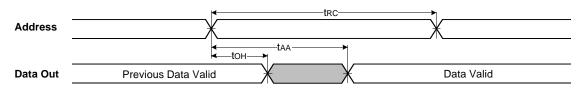


1.Including scope and jig capacitance

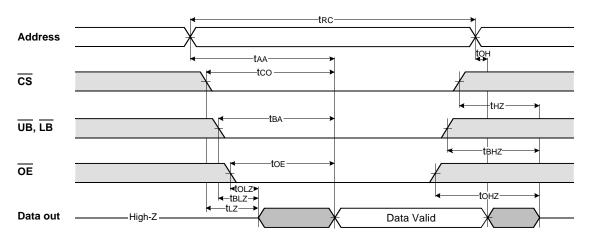
### AC CHARACTERISTICS (TA=-40 to 85°C, K6T4016V4C Family: Vcc=3.0~3.6V, K6T4016U4C Family:Vcc=2.7~3.3V)

|                |                                 |        | Speed Bins |     |     |     |       |     |       |
|----------------|---------------------------------|--------|------------|-----|-----|-----|-------|-----|-------|
| Parameter List |                                 | Symbol | 70         | ns  | 85  | ins | 100ns |     | Units |
|                | Read cycle time                 |        | Min        | Max | Min | Max | Min   | Max |       |
|                | Read cycle time                 | tRC    | 70         | -   | 85  | -   | 100   | -   | ns    |
|                | Address access time             | tAA    | -          | 70  | -   | 85  | -     | 100 | ns    |
|                | Chip select to output           | tco    | -          | 70  | -   | 85  | -     | 100 | ns    |
|                | Output enable to valid output   | tOE    | -          | 35  | -   | 40  | -     | 50  | ns    |
|                | LB, UB valid to data output     | tBA    | -          | 70  | -   | 85  | -     | 100 | ns    |
| Read           | Chip select to low-Z output     | tLZ    | 10         | -   | 10  | -   | 10    | -   | ns    |
| Reau           | Output enable to low-Z output   | tolz   | 5          | -   | 5   | -   | 5     | -   | ns    |
|                | LB, UB enable to low-Z output   | tBLZ   | 10         | -   | 10  | -   | 10    | -   | ns    |
|                | Chip disable to high-Z output   | tHZ    | 0          | 25  | 0   | 25  | 0     | 30  | ns    |
|                | Output hold from address change | tон    | 10         | -   | 10  | -   | 15    | -   | ns    |
|                | OE disable to high-Z output     | tонz   | 0          | 25  | 0   | 25  | 0     | 30  | ns    |
|                | UB, LB disable to high-Z output | tвнz   | 0          | 25  | 0   | 25  | 0     | 30  | ns    |
|                | Write cycle time                | twc    | 70         | -   | 85  | -   | 100   | -   | ns    |
|                | Chip select to end of write     | tcw    | 60         | -   | 70  | -   | 80    | -   | ns    |
|                | Address set-up time             | tAS    | 0          | -   | 0   | -   | 0     | -   | ns    |
|                | Address valid to end of write   | tAW    | 60         | -   | 70  | -   | 80    | -   | ns    |
|                | Write pulse width               | tWP    | 55         | -   | 55  | -   | 70    | -   | ns    |
| Write          | Write recovery time             | twR    | 0          | -   | 0   | -   | 0     | -   | ns    |
|                | Write to output high-Z          | twнz   | 0          | 25  | 0   | 25  | 0     | 30  | ns    |
|                | Data to write time overlap      | tDW    | 30         | -   | 35  | -   | 40    | -   | ns    |
|                | Data hold from write time       | tDH    | 0          | -   | 0   | -   | 0     | -   | ns    |
|                | End write to output low-Z       | tow    | 5          | -   | 5   | -   | 5     | -   | ns    |
|                | LB, UB valid to end of write    | tBW    | 60         | -   | 70  | -   | 80    | -   | ns    |

# DATA RETENTION CHARACTERISTICS


| Item                       | Symbol | Test Condition                               | Min | Тур | Max | Unit |
|----------------------------|--------|----------------------------------------------|-----|-----|-----|------|
| Vcc for data retention     | Vdr    | CS≥Vcc-0.2V <sup>1)</sup>                    | 2.0 | -   | 3.6 | V    |
| Data retention current     | Idr    | Vcc=3.0V, <u>CS</u> ≥Vcc-0.2V <sup>1</sup> ) | -   | 0.5 | 20  | μA   |
| Data retention set-up time | tSDR   | See data retention waveform                  | 0   | -   | -   | ms   |
| Recovery time              | trdr   | See data retention wavelonn                  | 5   | -   | -   | 1115 |

1.  $\overline{CS} \ge Vcc-0.2V(\overline{CS} \text{ controlled}) \text{ or } \overline{LB} = \overline{UB} \ge Vcc-0.2V, \overline{CS} \le 0.2V(\overline{LB}, \overline{UB} \text{ controlled})$ 

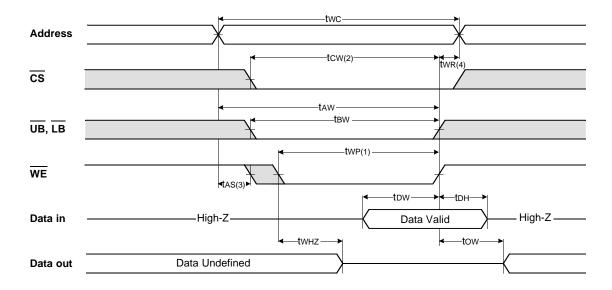



#### TIMMING DIAGRAMS

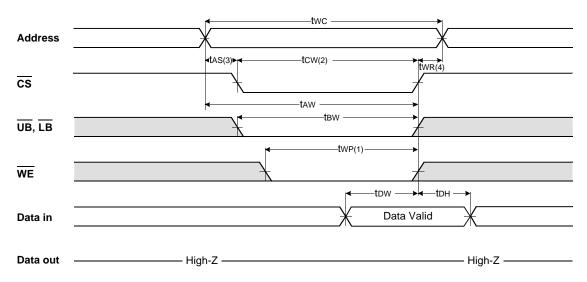
TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB or/and LB=VIL)



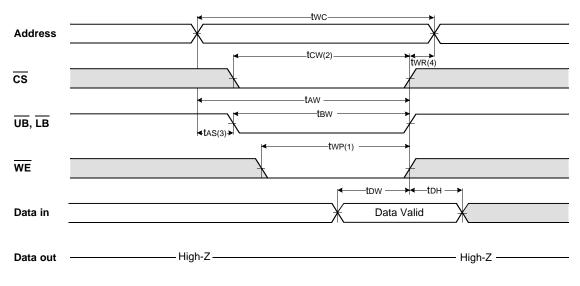
#### TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)




NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.




#### TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)



#### TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)







#### TIMING WAVEFORM OF WRITE CYCLE(3) (UB, LB Controlled)

NOTES (WRITE CYCLE)

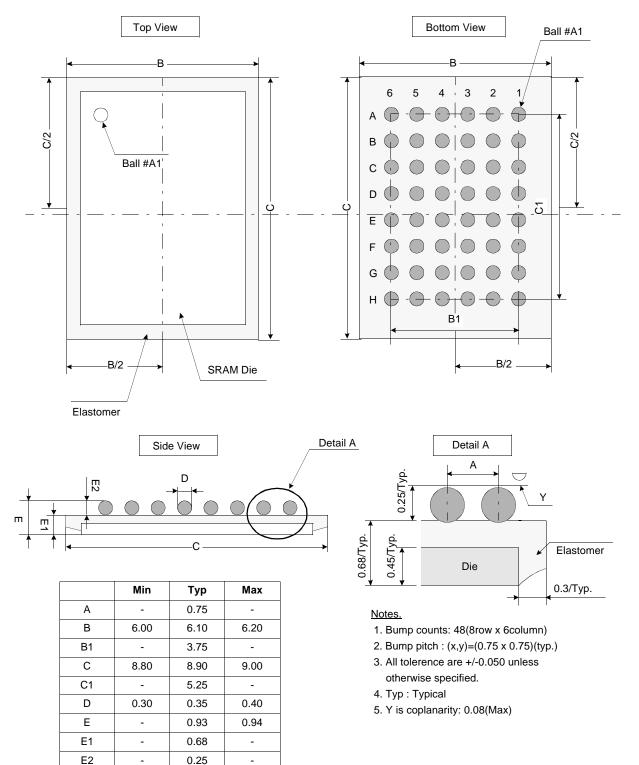
1. A write occurs during the overlap(twp) of low  $\overline{CS}$  and low  $\overline{WE}$ . A write begins when  $\overline{CS}$  goes low and  $\overline{WE}$  goes low with asserting  $\overline{UB}$  or LB for single byte operation or simultaneously asserting UB and LB for double byte operation. A write ends at the earliest transition when  $\overline{CS}$  goes high and  $\overline{WE}$  goes high. The twp is measured from the beginning of write to the end of write.

2. tcw is measured from the  $\overline{CS}$  going low to end of write.

3. tas is measured from the address valid to the beginning of write.

4. twr is measured from the end or write to the address change. twr applied in case a write ends as CS or WE going high.

# DATA RETENTION WAVE FORM






Units: millimeters

### PACKAGE DIMENSIONS

48 BALL MICRO BALL GRID ARRAY- 0.75mm ball pitch





Y

-

-

0.08