Document Title

512Kx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No	. <u>History</u>	<u>Draft Data</u>	Remark
0.0	Initial draft	December 17, 1996	Preliminary
1.0	Finalize - Change datasheet format - Erase low power part from product - Erase 70ns part from KM68U4000B family - Power dissipation Improved 0.7 to 1.0W - VIL(MAX) improved 0.4 to 0.6V. - Icc2 decreased 50 to 45mA.	Januarary 14, 1998	Final
2.0	Revised - Icc1 decreased 20 to 25mA	February 12, 1998	Final

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO., LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer to your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

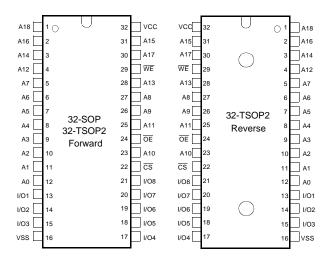
512K×8 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

Process Technology: TFT
Organization: 512K×8
Power Supply Voltage K6T4008V1B Family: 3.0~3.6V K6T4008U1B Family: 2.7~3.3V

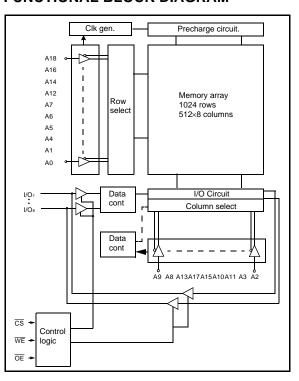
Low Data Retention Voltage: 2V(Min)
Three state output and TTL Compatible
Package Type: 32-SOP, 32-TSOP2-400F/R

GENERAL DESCRIPTION


The K6T4008V1B and K6T4008U1B families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature range and have various package type for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

PRODUCT FAMILY

				Power Di		
Product Family	Operating Temperature	Vcc Range	Speed	Standby (ISB1, Max)	Operating (Icc2, Max)	PKG Type
K6T4008V1B-B	Commercial(0~70°C)	3.0~3.6V	70 ¹⁾ /85 ¹⁾ /100ns	15uA		
K6T4008U1B-B	Commercial (0 470 C)	2.7~3.3V	85 ¹⁾ /100ns	τομιτ	45mA	32-SOP
K6T4008V1B-F	Industrial(-40~85°C)	3.0~3.6V	85 ¹⁾ /100ns	20μΑ	40117	32-TSOP2-F/R
K6T4008U1B-F	maastnai(-40-00-0)	2.7~3.3V	05 7 TOORS	20μΑ		


^{1.} The parameter is measured with 30pF test load.

PIN DESCRIPTION

Name	Function	Name	Function
CS	Chip Select Input	I/O1~I/O8	Data Inputs/Outputs
OE	Output Enable Input	Vcc	Power
WE	Write Enable Input	Vss	Ground
A0~A18	Address Inputs		

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

PRODUCT LIST

Commercial	Temp Products(0~70°C)	Industrial 1	Femp Products(-40∼85°C)
Part Name	Function	Part Name	Function
K6T4008V1B-GB70	32-SOP, 70ns, 3.3V,LL	K6T4008V1B-GF85	32-SOP, 85ns, 3.3V,LL
K6T4008V1B-GB80	32-SOP, 85ns, 3.3V,LL	K6T4008V1B-GF10	32-SOP, 100ns, 3.3V,LL
K6T4008V1B-GB10	32-SOP, 100ns, 3.3V,LL		
		K6T4008V1B-VF85	32-TSOP2-F, 85ns, 3.3V,LL
K6T4008V1B-VB70	32-TSOP2-F, 70ns, 3.3V,LL	K6T4008V1B-VF10	32-TSOP2-F, 100ns, 3.3V,LL
K6T4008V1B-VB85	32-TSOP2-F, 85ns, 3.3V,LL	K6T4008V1B-MF85	32-TSOP2-R, 85ns, 3.3V,LL
K6T4008V1B-VB10	32-TSOP2-F, 100ns, 3.3V,LL	K6T4008V1B-MF10	32-TSOP2-R, 100ns, 3.3V,LL
K6T4008V1B-MB70	32-TSOP2-R, 70ns, 3.3V,LL		
K6T4008V1B-MB85	32-TSOP2-R, 85ns, 3.3V,LL	K6T4008U1B-GF85	32-SOP, 85ns, 3.0V,LL
K6T4008V1B-MB10	32-TSOP2-R, 100ns, 3.3V,LL	K6T4008U1B-GF10	32-SOP, 100ns, 3.0V,LL
K6T4008U1B-GB85	32-SOP, 85ns, 3.0V,LL	K6T4008U1B-VF85	32-TSOP2-F, 85ns, 3.0V,LL
K6T4008U1B-GB10	32-SOP, 100ns, 3.0V,LL	K6T4008U1B-VF10	32-TSOP2-F, 100ns, 3.0V,LL
		K6T4008U1B-MF85	32-TSOP2-R, 85ns, 3.0V,LL
K6T4008U1B-VB85	32-TSOP2-F, 85ns, 3.0V,LL	K6T4008U1B-MF10	32-TSOP2-R, 100ns, 3.0V,LL
K6T4008U1B-VB10	32-TSOP2-F, 100ns, 3.0V,LL		
K6T4008U1B-MB85	32-TSOP2-R, 85ns, 3.0V,LL		
K6T4008U1B-MB10	32-TSOP2-R, 100ns, 3.0V,LL		

Note: LL means Low Low standby current

FUNCTIONAL DESCRIPTION

CS	OE	WE	I/O	Mode	Power
Н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	Н	Н	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

^{1.} X means don't care (Must be in low or high state)

ABSOLUTE MAXIMUM RATINGS(1)

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	VIN,VOUT	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.3 to 4.6	V	-
Power Dissipation	PD	1	W	-
Storage temperature	Тѕтс	-65 to 150	°C	-
Operating Temperature	TA	0 to 70	°C	K6T4008V1B-L, K6T4008U1B-L
Sperating remperature	IA	-40 to 85	°C	K6T4008V1B-P, K6T4008U1B-P
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

^{1.} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS(1)

Item	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T4008V1B Family	3.0	3.3	3.6	V
Capply Vollage	****	K6T4008U1B Family	2.7	3.0	3.3	•
Ground	Vss	All Family	0	0	0	V
Input high voltage	ViH	K6T4008V1B, K6T4008U1B Family	2.2	-	Vcc+0.3 ²⁾	V
Input low voltage	VIL	K6T4008V1B, K6T4008U1B Family	-0.3 ³⁾	-	0.6	V

Note:

- 1. Commercial Product: T_A=0 to 70°C, otherwise specified Industrial Product : T_A=-40 to 85°C, otherwise specified

- Overshoot: V_{CC}+3.0V in case of pulse width ≤ 30ns
 Undershoot: -3.0V in case of pulse width ≤ 30ns
 Overshoot and undershoot are sampled, not 100% tested.

CAPACITANCE¹⁾ (f=1MHz, Ta=25°C)

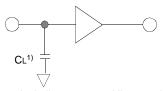
Item Symbo		Test Condition	Min	Max	Unit	
Input capacitance	CIN	VIN=0V	-	8	pF	
Input/Output capacitance	Сю	Vio=0V	-	10	pF	

^{1.} Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions		Min	Тур	Max	Unit
Input leakage current	Iц	VIN=Vss to Vcc	VIN=Vss to Vcc				μΑ
Output leakage current	ILO	CS=VIH or OE=VIH or WE=VIL VIO=Vss to Vcc		-1	-	1	μΑ
Operating power supply	Icc	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read	IIO=0mA, CS=VIL, VIN=VIL or VIH, Read				mA
	Icc1	Cycle time=1 μ s, 100% duty, Iio=0mA, $\overline{CS} \le 0.2V$ ViN $\le 0.2V$ or ViN $\ge V$ cc-0.2V		-	-	10	mA
Average operating current	1001			-	-	25	
	ICC2	Cycle time=Min, 100% duty, Iio=0mA, CS=VIL, VIN=VIH or VIL			-	45	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Voн	IOH=-1.0mA	Юн=-1.0mA			-	V
Standby Current(TTL)	IsB	CS=VIH, Other inputs = VIL or VIH			-	0.5	mA
Standby	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc		-	ı	15 ¹⁾	μΑ

^{1.} Industrial product = $20\mu A$



AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Input/Output Reference)

Input pulse level: 0.4 to 2.2V
Input rising and falling time: 5ns
Input and output reference voltage:1.5V
Output load(see right): CL=100pF+1TTL
CL¹)=30pF+1TTL

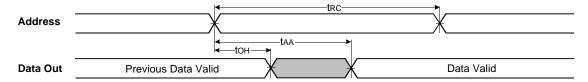
1. K6T4008V1B-7, K6T4008V1B-8 Family and K6T4008U1B-8 Family

1. Including scope and jig capacitance

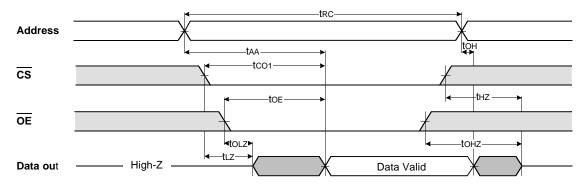
AC CHARACTERISTICS (K6T4008V1B Family: Vcc=3.0~3.6V, K6T4008U1B Family: Vcc=2.7~3.3V Commercial product: Ta=0 to 70°C, Industrial product: Ta=-40 to 85°C)

Parameter List			Speed Bins						
		Symbol	70)ns	85ns		100ns		Units
			Min	Max	Min	Max	Min	Max	
	Read cycle time	trc	70	-	85	-	100	-	ns
	Address access time	tAA	-	70	-	85	-	100	ns
	Chip select to output	tco	-	70	-	85	-	100	ns
	Output enable to valid output	toe	-	35	-	40	-	50	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns
	Output enable to low-Z output	toLZ	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	25	0	25	0	30	ns
	Output disable to high-Z output	tonz	0	25	0	25	0	30	ns
	Output hold from address change	tон	10	-	10	-	15	-	ns
	Write cycle time	twc	70	-	85	-	100	-	ns
	Chip select to end of write	tcw	60	-	70	-	80	-	ns
	Address set-up time	tas	0	-	0	-	0	-	ns
	Address valid to end of write	taw	60	-	70	-	80	-	ns
Write	Write pulse width	twp	55	-	55	-	70	-	ns
vvrite	Write recovery time	twr	0	-	0	-	0	-	ns
	Write to output high-Z	twnz	0	25	0	25	0	30	ns
	Data to write time overlap	tow	30	-	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	5	-	5	-	ns

DATA RETENTION CHARACTERISTICS


Item	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	Idr	Vcc=3.0V, CS≥Vcc-0.2V	-	0.5	15 ¹⁾	μΑ
Data retention set-up time	tsdr	See data retention waveform	0	-	-	ms
Recovery time	trdr	- occ data retention wavelonn	5	-	-	1113

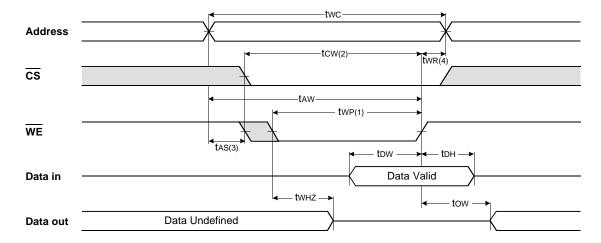
1. Industrial product = 20μA



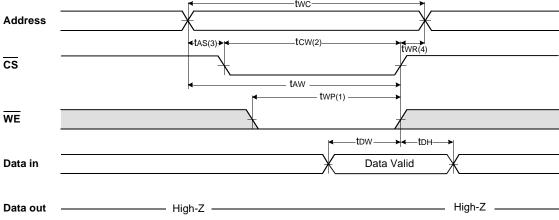
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH)

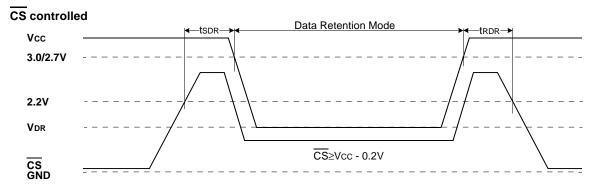
TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)



NOTES (READ CYCLE)


- 1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.
- 2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

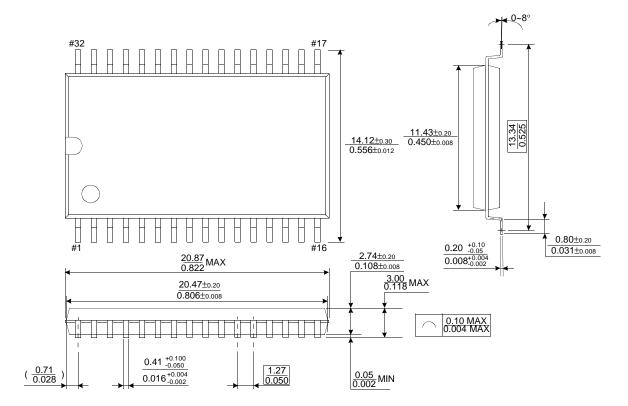
TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)


TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

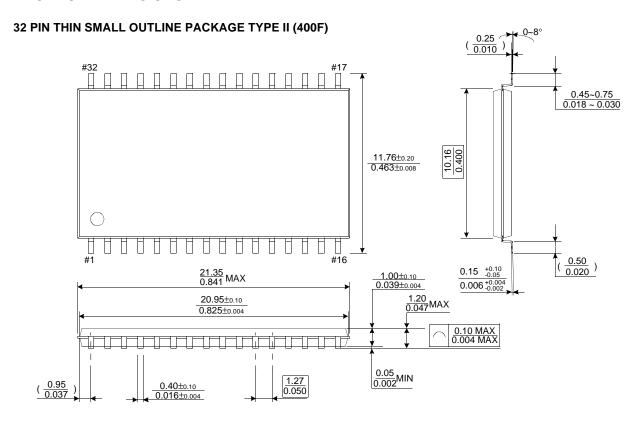
NOTES (WRITE CYCLE)

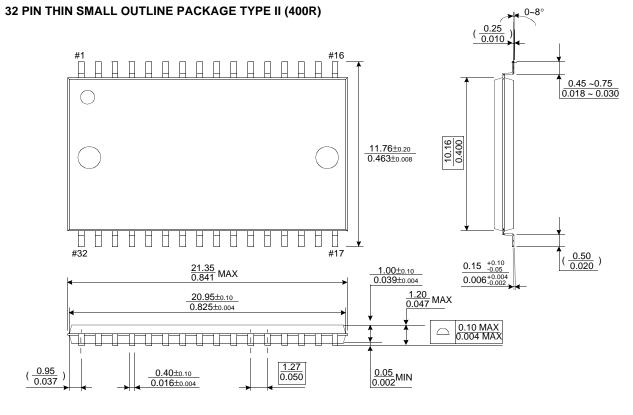
- 1. A write occurs during the overlap of a low $\overline{\text{CS}}$ and $\underline{\text{a low}}$ $\overline{\text{WE}}$. A write $\underline{\text{begins}}$ at the latest transition among $\overline{\text{CS}}$ going Low and $\overline{\text{WE}}$ going low : A write end at the earliest transition among $\overline{\text{CS}}$ going high and $\overline{\text{WE}}$ going high, two is measured from the begining of write to the end of write
- 2. tcw is measured from the $\overline{\text{CS}}$ going low to end of write.
- 3. tAS is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change. twn applied in case a write ends as CS or WE going high.

DATA RETENTION WAVE FORM



Units: millimeter(inch)


PACKAGE DIMENSIONS


32 PIN PLASTIC SMALL OUTLINE PACKAGE (525mil)

PACKAGE DIMENSIONS

Units: millimeter(inch)

