Document Title

32Kx8 bit Low Power and Low Voltage CMOS Static RAM

Revision History

Revision No.	History	Draft Data	<u>Remark</u>
0.0	Initial draft	April 1, 1997	Preliminary
1.0	 Finalize Add 70ns part in KM62U256D Family Show Icc read only, and increased value Icc = 2mA →Icc Read = 5mA Seperate Icc1 read and write Icc1 = 5mA→Icc1 Read = 5mA, Icc1 Write = 10mA Improved standby current(IsB1) Commercial part : 10µA→5µA Extended and Industrial part : 20µA→5µA Improved VIL(Min.) : 0.4V→0.6V 	November 12, 1997	Final

- Improved power dissipation : 0.7W $\!\!\!\rightarrow\!\! 1W$

The attached datasheets are provided by SAMSUNG Electronics. SAMSUNG Electronics CO, LTD. reserve the right to change the specifications and products. SAMSUNG Electronics will answer your questions about device. If you have any questions, please contact the SAMSUNG branch offices.

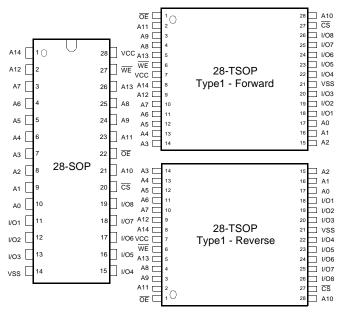
32Kx8 bit Low Power and Low Voltage CMOS Static RAM

FEATURES

- Process Technology: 0.4µm CMOS
- Organization: 32Kx8
- Power Supply Voltage K6T0808V1D family: 3.0~3.6V K6T0808U1D family: 2.7~3.3V
- Low Data Retention Voltage: 2V(Min)
- Three state output and TTL Compatible
- Package Type: 28-SOP-450, 28-TSOP1-0813.4F/R

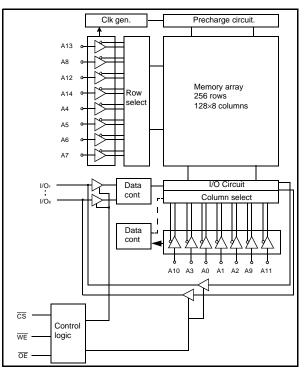
PRODUCT FAMILY

GENERAL DESCRIPTION


The K6T0808V1D and K6T0808U1D families are fabricated by SAMSUNG's advanced CMOS process technology. The families support various operating temperature range and have various package types for user flexibility of system design. The families also support low data retention voltage for battery back-up operation with low data retention current.

	Operating Tempera-		Power Di	ssipation		
Product Family	ture	Vcc Range	Speed	Standby (Isв1, Max)	Operating (Icc2, Max)	PKG Type
K6T0808V1D-B	Commercial(0~70°C)	3.0V ~3.6V	70 ¹⁾ /100ns			
K6T0808U1D-B		2.7V ~ 3.3V	70 ¹⁾ /85/100ns			
K6T0808V1D-D	Extended(-25~85°C)	3.0V ~3.6V	70 ¹⁾ /100ns	5µA	35mA	28-SOP ²⁾
K6T0808U1D-D		2.7V ~ 3.3V	70 ¹⁾ /85/100ns	υμη	55IIIA	28-TSOP1-F/R
K6T0808V1D-F	Industrial(-40~85°C)	3.0V ~3.6V	70 ¹⁾ /100ns			
K6T0808U1D-F		2.7V ~ 3.3V	701)/85/100ns			

1. The parameter is measured with 30pF test load.


2. K6T0808V1D Family support SOP package without 100ns speed bin.

PIN DESCRIPTION

Pin Name	Function	Pin Name	Function
A0~A14	Address Inputs	I/O1~I/O8	Data Inputs/Outputs
WE	Write Enable Input	Vcc	Power
CS	Chip Select Input	Vss	Ground
OE	Output Enable Input	NC	No connect

FUNCTIONAL BLOCK DIAGRAM

SAMSUNG ELECTRONICS CO., LTD. reserves the right to change products and specifications without notice.

K6T0808V1D, K6T0808U1D Family

PRODUCT LIST

Commercial Temp. Product (0~70°C)			emp. Products -85°C)	Industrial Temp Products (-40~85°C)			
Part Name	Function	Part Name	Function	Part Name	Function		
K6T0808V1D-GB70	28-SOP, 70ns, 3.3V	K6T0808V1D-GD70	28-SOP, 70ns, 3.3V	K6T0808V1D-GF70	28-SOP, 70ns, 3.3V		
K6T0808V1D-TB70	28-TSOP F, 70ns, 3.3V	K6T0808V1D-TD70	28-TSOP F, 70ns, 3.3V	K6T0808V1D-TF70	28-TSOP F, 70ns, 3.3V		
K6T0808V1D-TB10	28-TSOP F, 100ns, 3.3V	K6T0808V1D-TD10	28-TSOP F, 100ns, 3.3V	K6T0808V1D-TF10	28-TSOP F, 100ns, 3.3V		
K6T0808V1D-RB70	28-TSOP R, 70ns, 3.3V	K6T0808V1D-RD70	28-TSOP R, 70ns, 3.3V	K6T0808V1D-RF70	28-TSOP R, 70ns, 3.3V		
K6T0808V1D-RB10	28-TSOP R, 100ns, 3.3V	K6T0808V1D-RD10	28-TSOP R, 100ns, 3.3V	K6T0808V1D-RF10	28-TSOP R, 100ns, 3.3V		
K6T0808U1D-GB70	28-SOP, 70ns, 3.0V	K6T0808U1D-GD70	28-SOP, 70ns, 3.0V	K6T0808U1D-GF70	28-SOP, 70ns, 3.0V		
K6T0808U1D-GB85	28-SOP, 85ns, 3.0V	K6T0808U1D-GD85	28-SOP, 85ns, 3.0V	K6T0808U1D-GF85	28-SOP, 85ns, 3.0V		
K6T0808U1D-GB10	28-SOP, 100ns, 3.0V	K6T0808U1D-GD10	28-SOP, 100ns, 3.0V	K6T0808U1D-GF10	28-SOP, 100ns, 3.0V		
K6T0808U1D-TB70	28-TSOP F, 70ns, 3.0V	K6T0808U1D-TD70	28-TSOP F, 70ns, 3.0V	K6T0808U1D-TF70	28-TSOP F, 70ns, 3.0V		
K6T0808U1D-TB85	28-TSOP F, 85ns, 3.0V	K6T0808U1D-TD85	28-TSOP F, 85ns, 3.0V	K6T0808U1D-TF85	28-TSOP F, 85ns, 3.0V		
K6T0808U1D-TB10	28-TSOP F, 100ns, 3.0V	K6T0808U1D-TD10	28-TSOP F, 100ns, 3.0V	K6T0808U1D-TF10	28-TSOP F, 100ns, 3.0V		
K6T0808U1D-RB70	28-TSOP R, 70ns, 3.0V	K6T0808U1D-RD70	28-TSOP R, 70ns, 3.0V	K6T0808U1D-RF70	28-TSOP R, 70ns, 3.0V		
K6T0808U1D-RB85	28-TSOP R, 85ns, 3.0V	K6T0808U1D-RD85	28-TSOP R, 85ns, 3.0V	K6T0808U1D-RF85	28-TSOP R, 85ns, 3.0V		
K6T0808U1D-RB10	28-TSOP R, 100ns, 3.0V	K6T0808U1D-RD10	28-TSOP R, 100ns, 3.0V	K6T0808U1D-RF10	28-TSOP R, 100ns, 3.0V		

FUNCTIONAL DESCRIPTION

CS	OE	WE	I/O	Mode	Power
н	X ¹⁾	X ¹⁾	High-Z	Deselected	Standby
L	н	н	High-Z	Output Disabled	Active
L	L	Н	Dout	Read	Active
L	X ¹⁾	L	Din	Write	Active

1. X means don't care (Must be in high or low states)

ABSOLUTE MAXIMUM RATINGS¹⁾

Item	Symbol	Ratings	Unit	Remark
Voltage on any pin relative to Vss	Vin,Vout	-0.5 to Vcc+0.5	V	-
Voltage on Vcc supply relative to Vss	Vcc	-0.5 to 4.6	V	-
Power Dissipation	PD	1.0	W	-
Storage temperature	Tstg	-65 to 150	°C	-
		0 to 70	°C	K6T0808V1D-L, K6T0808U1D-L
Operating Temperature	TA	-25 to 85	°C	K6T0808V1D-N, K6T0808U1D-N
		-40 to 85	°C	K6T0808V1D-P, K6T0808U1D-P
Soldering temperature and time	TSOLDER	260°C, 10sec (Lead Only)	-	-

1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Functional operation should be restricted to recommended operating condition. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS⁽¹⁾

ltem	Symbol	Product	Min	Тур	Max	Unit
Supply voltage	Vcc	K6T0808V1D Family	3.0	3.3	3.6	V
	VCC	K6T0808U1D Family 2.7 3.0				v
Ground	Vss	ALL	0	0	0	V
Input high voltage	Vін	K6T0808V1D, K6T0808U1D Family	2.2	-	Vcc+0.3	V
Input low voltage	VIL	K6T0808V1D, K6T0808U1D Family	-0.3 ³⁾	-	0.6	V

Note:

1. Commercial Product : TA=0 to 70°C, otherwise specified Industrial Product : TA=-40 to 85°C, otherwise specified

2. Overshoot : V_{CC} +3.0V in case of pulse width≤30ns

3. Undershoot : -3.0V in case of pulse width≤30ns

4. Overshoot and undershoot are sampled, not 100% tested

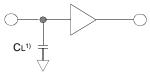
CAPACITANCE¹⁾ (f=1MHz, TA=25°C)

Item	Symbol	Test Condition	Min	Мах	Unit
Input capacitance	CIN	VIN=0V	-	8	pF
Input/Output capacitance	Сю	VIO=0V	-	10	pF

1. Capacitance is sampled, not 100% tested

DC AND OPERATING CHARACTERISTICS

Item	Symbol	Test Conditions	Min	Тур	Max	Unit	
Input leakage current	Iц	VIN=Vss to Vcc	VIN=Vss to Vcc				
Output leakage current	Ilo	CS=VIH or OE=VIH or WE=VIL, VIO=Vss to Vcc		-1	-	1	μA
Operating power supply current	Icc	IIO=0mA, CS=VIL, VIN=VIH or VIL, Read	-	2	5	mA	
	ICC1	Cycle time=1µs, 100% duty, lio=0mA	Read	-	1.5	5	mA
Average operating current		<u>CS</u> ≤0.2V, VIN≤0.2V, VIN≥Vcc -0.2V	Write		6	10	ША
Average operating current	ICC2	Cycle time=Min,100% duty, IIO=0mA, CS=VIL, VIN=VIH or VIL			23	35	mA
Output low voltage	Vol	IoL=2.1mA		-	-	0.4	V
Output high voltage	Vон	Іон=-1.0mA		2.4	-	-	V
Standby Current(TTL)	lsв	CS=VIH, Other inputs=VIH or VI∟	-	-	0.3	mA	
Standby Current (CMOS)	ISB1	CS≥Vcc-0.2V, Other inputs=0~Vcc	-	0.1	5	μA	



K6T0808V1D, K6T0808U1D Family

CMOS SRAM

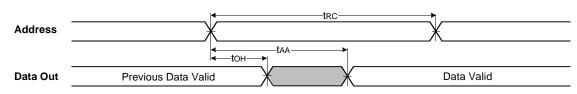
AC OPERATING CONDITIONS

TEST CONDITIONS (Test Load and Test Input/Output Reference)Input pulse level : 0.4 to 2.4VInput rising and falling time : 5nsInput and output reference voltage : 1.5VOutput load (See right) :CL=100pF+1TTL $CL^{1)}=30pF+1TTL$ 1. Refer to AC CHARACTERISTICS

1. Including scope and jig capacitance

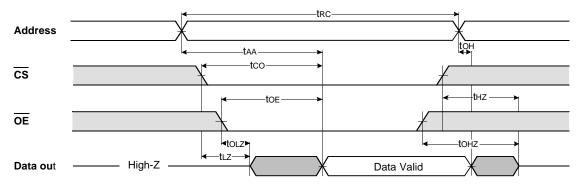
AC CHARACTERISTICS (K6T0808V1D Family : Vcc=3.0~3.6V, , K6T0808U1D Family : Vcc=2.7~3.3V Commercial product :Ta=0 to 70°C, Extended product :Ta=-25 to 85°C, Industrial product : Ta=-40 to 85°C)

					Spe	ed Bins			
Parameter List		Symbol	Symbol 70 ¹⁾ ns		85	85ns		Ons	Units
			Min	Max	Min	Мах	Min	Max	
	Read cycle time	tRC	70	-	85	-	100	-	ns
	Address access time	tAA	-	70	-	85	-	100	ns
	Chip select to output	tco	-	70	-	85	-	100	ns
	Output enable to valid output	tOE	-	35	-	40	-	50	ns
Read	Chip select to low-Z output	tLZ	10	-	10	-	10	-	ns
	Output enable to low-Z output	tolz	5	-	5	-	5	-	ns
	Chip disable to high-Z output	tHZ	0	30	0	30	0	35	ns
	Output disable to high-Z output	tohz	0	30	0	30	0	35	ns
	Output hold from address	tон	5	-	10	-	15	-	ns
	Write cycle time	twc	70	-	85	-	100	-	ns
	Chip select to end of write	tcw	60	-	70	-	80	-	ns
	Address set-up time	tAS	0	-	0	-	0	-	ns
	Address valid to end of write	tAW	60	-	70	-	80	-	ns
Write	Write pulse width	tWP	50	-	60	-	70	-	ns
White	Write recovery time	twR	0	-	0	-	0	-	ns
	Write to output high-Z	twнz	0	25	0	25	0	35	ns
	Data to write time overlap	tDW	30	-	35	-	40	-	ns
	Data hold from write time	tDH	0	-	0	-	0	-	ns
	End write to output low-Z	tow	5	-	10	-	10	-	ns


1. The parameter is measured with 30pF test load

DATA RETENTION CHARACTERISTICS

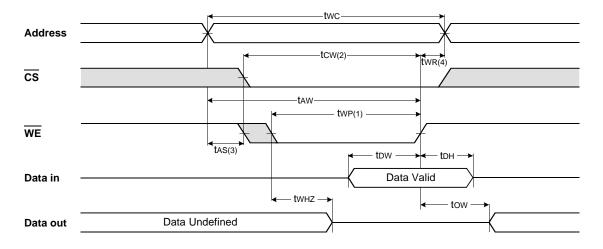
ltem	Symbol	Test Condition	Min	Тур	Max	Unit
Vcc for data retention	Vdr	CS≥Vcc-0.2V	2.0	-	3.6	V
Data retention current	Idr	Vcc=3.0V, <u>CS</u> ≥Vcc-0.2V	-		5	μA
Data retention set-up time	tSDR	See data retention waveform	0	-	-	ms
Recovery time	trdr	See data retention wavelonn	5	-	-	1115



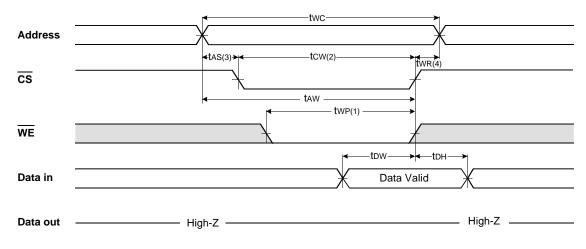
TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)


NOTES (READ CYCLE)

1. tHZ and tOHZ are defined as the time at which the outputs achieve the open circuit conditions and are not referenced to output voltage levels.

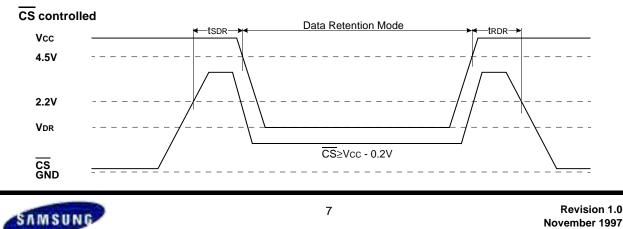

2. At any given temperature and voltage condition, tHZ(Max.) is less than tLZ(Min.) both for a given device and from device to device interconnection.

TIMING WAVEFORM OF WRITE CYCLE(1) (WE Controlled)

TIMING WAVEFORM OF WRITE CYCLE(2) (CS Controlled)

NOTES (WRITE CYCLE)

1. A write occurs during the overlap of a low \overline{CS} and a low \overline{WE} . A write begins at the latest transition among \overline{CS} going Low and \overline{WE} going low : A write end at the earliest transition among \overline{CS} going high and \overline{WE} going high, twp is measured from the begining of write to the end of write.

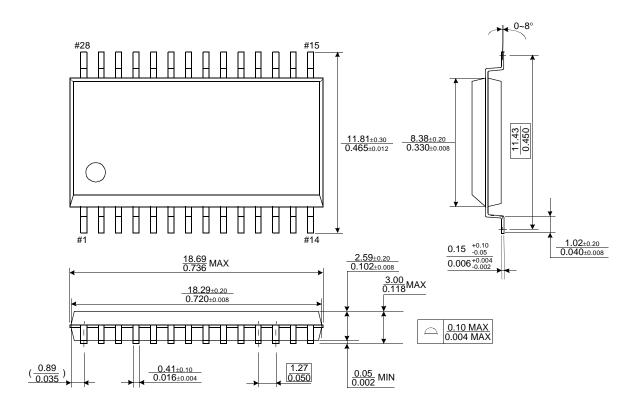

2. tcw is measured from the CS going low to end of write.

3. tAS is measured from the address valid to the beginning of write.

4. twe is measured from the end of write to the address change. twe applied in case a write ends as CS or WE going high.

DATA RETENTION WAVE FORM

ELECTRONICS

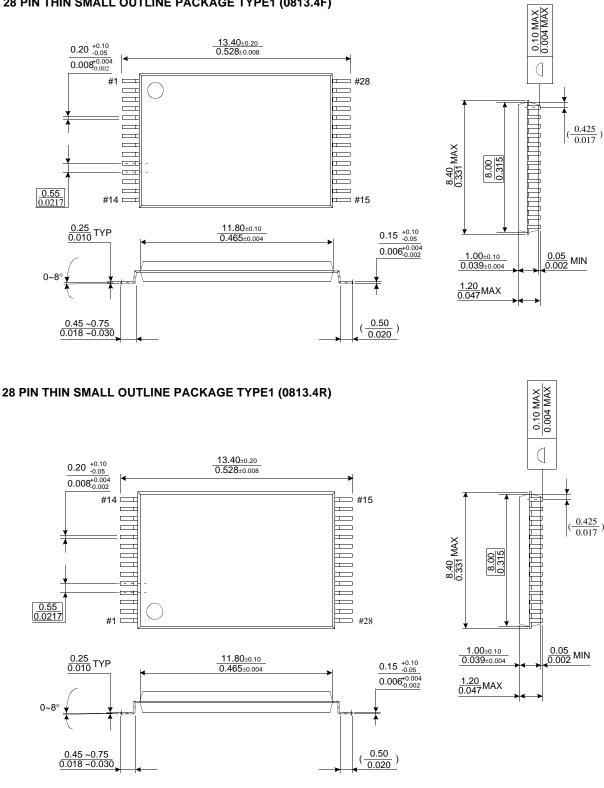


CMOS SRAM

PACKAGE DIMENSIONS

28 PIN PLASTIC SMALL OUTLINE PACKAGE(450mil)

Units: millimeter(inch)



PACKAGE DIMENSIONS

28 PIN THIN SMALL OUTLINE PACKAGE TYPE1 (0813.4F)

Units: millimeter(inch)

9