2560-bit CMOS static RAM

The S-2510A is a 2560-bit complete CMOS static RAM. Addresses and data are input or output in serial for easy interfacing, so it is suitable for expansion of telephone memories.

Features

- Low standby current:
 0.01 μA typ. 0.25 μA max. V_{CC} = 1.5 V
- · Low data retention voltage: 1.0 V min.
- Wide operating voltage range:
 1.16 V to 5.5 V
- Interface is available for connecting only 4 pins
- · Data length is set by D0, D1, and D2
- · 14-pin DIP package

■ Pin Assigmment

ADCLK	Address clock
DTCLK	Data clock
DATA I/O	Data input/output
R/W	Read/write
CE1	Chip enable1
CE2	Chip enable2
V _{CC}	Power supply voltage (+5V)
GND	Ground

Figure 1

Block Diagram

Figure 2

Absolute Maximum Ratings

Table 1

item	Symbol	Conditions	Ratings	Unit
Storage temperature	T _{stg}		- 40 to + 125	°C
Storage temperature under bias	T _{bias}		- 30 to +75	°C
Power supply voltage	V _{CC}		6.0	V
Input voltage	V _{IN}	All input pins	$V_{SS} - 0.3$ to $V_{CC} + 0.3$	V
www.DataSheet4U.com Output voltage	V _{OUT}	DATA I/O	$V_{SS} - 0.3$ to $V_{CC} + 0.3$	٧
Power dissipation	P _D	Ta = 25°C	300	mW

■ Recommended Operating Conditions

Table 2

ltem	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltage	V _{CC}	Ta = 25°C	1.16		5.5	٧
High level input voltage	V _{IH}	Ta = 25°C	0.8 × V _{CC}	_	V _{CC}	٧
Low level input voltage	V _{IL}	Ta = 25°C	V _{SS}	_	0.2 x V _{CC}	V
Operating temperature	T _{opr}		- 30	_	75	°C

■ Electrical Characteristics

1. DC characteristics

Table 3

 $(Ta = 25^{\circ}C, V_{SS} = 0 V)$

				(1a=23 C	7 - 33 - 4
Symbol	Conditions	Min.	Тур.	Max.	Unit
V_{DR}		1.0	_		>
len	V _{CC} = 1.5 V	_	0.01	0.25	μΑ
,28	V _{CC} = 5.5 V		5.0	50.0	μΑ
	V _{CC} = 1.5 V, f = 10 kHz	_		2.0	μΑ
lcc	$V_{CC} = 5.0 \text{ V, } f = 10 \text{ kHz}$		_	10.0	μА
	V _{CC} = 3.0 V, f = 200 kHz			50.0	μА
	V _{CC} = 5.0 V, f = 500 kHz			200.0	μА
lor	$V_{CC} = 1.5 \text{ V}, V_{OL} = 0.1 \text{ V}$	25			μΑ
	$V_{CC} = 5.0 \text{ V}, V_{OL} = 0.4 \text{ V}$	250			μА
Гон	V _{CC} = 1.5 V, V _{OH} = 1.4 V			-2 5	μΑ
	$V_{CC} = 5.0 \text{ V}, V_{OH} = 4.6 \text{ V}$			-2 50	μΑ
I _{OFFL}	V _{CC} = 5.5 V, V _{OFFL} = 0 V	-1.0	-0.01		μΑ
l _{OFFH}	V _{CC} = 5.5 V, V _{OFFH} = 5.5 V		0.01	1.0	μА
l _{IL}	V _{CC} = 5.5 V, V _{OFFL} = 0 V	-1.0	-0.01		μΑ
I _{IH}	V _{CC} = 5.5 V, V _{OFFH} = 5.5 V		0.01	1.0	μΑ
	V _{DR} I _{SB} I _{CC} I _{OL} I _{OFFL} I _{OFFH}	V_{DR} $I_{SB} = \begin{cases} V_{CC} = 1.5 \text{ V} \\ V_{CC} = 5.5 \text{ V} \end{cases}$ $V_{CC} = 5.5 \text{ V}$ $V_{CC} = 1.5 \text{ V}, f = 10 \text{ kHz}$ $V_{CC} = 5.0 \text{ V}, f = 10 \text{ kHz}$ $V_{CC} = 3.0 \text{ V}, f = 200 \text{ kHz}$ $V_{CC} = 5.0 \text{ V}, f = 500 \text{ kHz}$ $V_{CC} = 5.0 \text{ V}, V_{OL} = 0.1 \text{ V}$ $V_{CC} = 5.0 \text{ V}, V_{OL} = 0.4 \text{ V}$ $V_{CC} = 5.0 \text{ V}, V_{OH} = 1.4 \text{ V}$ $V_{CC} = 5.0 \text{ V}, V_{OH} = 4.6 \text{ V}$ $I_{OFFL} = 0 \text{ V}$ $I_{OFFH} = 0 \text{ V}$ $I_{OFFH} = 0 \text{ V}$ $V_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}$ $I_{IL} = 0 \text{ V}$	$V_{DR} = 1.5 \text{ V} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, f = 10 \text{ kHz}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, f = 10 \text{ kHz}} - \frac{1.0}{\text{V}_{CC} = 3.0 \text{ V}, f = 200 \text{ kHz}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, V_{OL} = 0.1 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, V_{OL} = 0.4 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, V_{OH} = 1.4 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.0 \text{ V}, V_{OH} = 4.6 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}, V_{OFFL} = 0 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5 \text{ V}} - \frac{1.0}{\text{V}_{CC} = 5.5$	$V_{DR} = 1.0 - 0.01$ $I_{SB} = \frac{V_{CC} = 1.5 \text{ V}}{V_{CC} = 5.5 \text{ V}} - 0.01$ $V_{CC} = 5.5 \text{ V} - 5.0$ $V_{CC} = 1.5 \text{ V}, f = 10 \text{ kHz}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

2. AC characteristics

Table 4

ltem	Symbol	V _{CC} = 1.2 V	V _{CC} = 3.0 V	V _{CC} = 5.0 V
Maximum operating frequency*	f _{MAX}	35 kHz	200 kHz	500 kHz
DTCLK lead time	t _{PDT}	3.0 µs min.	0.5 μs min.	0.2 μs min.
Initialize time CE initialize lead time	t _{INIT}	9.0 µs min.	1.5 μs min.	0.6 μs min.
Hold time after CE initialization	t _{CE1'&2'}	3.0 µs min.	0.5 μs min.	0.2 μs min.
Read/write changeable time	t _{RWA} ,t _{RWB}	9.0 µs min.	1.5 µs min.	0.6 µs min.
Dummy clock delay time	t _{DUMMY}	12.0 µs min.	2.0 µs min.	0.8 µs min.
DATA I/O off time when read	t _{RD}	12.0 µs min	2.0 µs min.	0.8 µs min.
ADCLK delay time	t _{ADR} ,t _{DT}	6.0 µs min.	1.0 µs min.	0.4 µs min.
Change timing of D0, D1, and D2	t _{DLA} ,t _{DLB}	9.0 μs min.	1.5 µs min.	0.6 µs min.
Data output delay time	t _{RDT}	3.0 µs max.	0.5 μs max.	0.2 μs max.

* Frequency of ADCLK or DTCLK Load capacitance of DATA I/O: 100 pF

(1) Initialize

Figure 3

(2) Address finish

(3) Address (data) input

(4) Change of D0, D1, and D2

(5) Read

Pin Function

No.	Signal	Functions					
1	ADCLK	Clock input pin for transmitting addresses. Addresses are fetched, synchronized with rise of ADCLK. By transmitting ADCLK synchronized with DTCLK, memory is initialized to be in address receivable status. When address is finished, DTCLK can be accessed after 1 clock of ADCLK has been sent.					
2	DTCLK	Clock input pin for transmitting data. Data are fetched, synchronized with rise of DTCLK when write. After being fetched for specified data length, data are written into the memory in a timing between DTCLKs. After address input, the first DTCLK becomes the dummy clock to indicate that address is completed. R/W becomes effective, synchronized with rise of the dummy clock. Data read from the memory are output to DATA I/O synchronized with fall of the dummy clock when read.					
3	DATA I/O	Address input, or data I/O pin. When read, initialize before fall of the dummy clock to return DATA I/O to high impedance.					
4	R∕Ŵ*	Read/write selection pin. It is not the write clock of negative logic. Do not change its level during DTCLK send when address input.					
5	CE1* CE2*	Chip enable pins. They are latched synchronized with clock at initialization. Clock and data are receivable when pins are in enable state. Note: Standby current does not change even in enable state.					
7	GND	Connect to GND.					
8 9 10	D0* D1* D2*	Data width selection pin. There are seven data widths you can select as in the table below.					
		[D0	D1	D2	Data width x word	Valid address data width
			0	0	0	8-bit × 256	8 bits
			1	0	0	8-bit × 256	8 bits
			0	1	0	2-bit x 1024	10 bits
			1	1	0	3-bit x 512	9 bits
			0	0	1	4-bit × 512	9 bits
	www.DataS	heet4U.co	m 1	0	1	5-bit × 512	9 bits
			0	1	1	6-bit x 256	8 bits
			1	1	1	7-bit x 256	8 bits

No.	Signal	Functions
11 12 13	NC	Non connection.
14	Vcc	Positive power supply. Connect to between 1.16 V to 5.5 V.

* CE1 and CE2 are latched at power on or at initialization, and keep their state until the next initialization. They have no effect unless they change at initialization.

The levels of RW, D0, D1, and D2 are fetched through the buffer.

Set the level of RW before the rise of the first DTCLK (dummy clock) after initialization.

D0, D1, and D2 can change from initialization to the rise of the ninth ADCLK. If output ADCLK is less than nine, set their levels before the rise of dummy clock. Usually, they are fixed to power supply or GND.

Operation

1. Initialize

When power is turnd on, the power-on-clear circuit starts operation; memory, address counter and controller are initialized, and the states of CE1 and CE2 are read. DATA I/O becomes high impedance. When ADCLK and DTCLK are detected to have been high, address counter and controller are reinitialized, and the states of CE1 and CE2 are reread. Then, after chip enable, memory receives external input.

At initialization, set that rise of DTCLK is earlier than rise of ADCLK as shown in Figure 8.

When memory is initialized in read or write state, perform the initialization after data for set data width is read or written, that is, DTCLK is output for set data width.

Figure 8 Initialize

Figure 9 Example of initialize: when data width is 4 bits

2. Address set

Address is set after initialization.

Addresses are input from DATA I/O synchronized with ADCLK. Input addresses are fetched at rise of ADCLK. The last input bit becomes the MSB of addresses. When addresses are input over the valid address data width, address data over the width are ignored. Address is valid from initialization by ADCLK and DTCLK until rise of DTCLK.

[Note] Input 1-bit (1-ADCLK) or more address.

Figure 11 shows examples of address set in case of 8-bit address width.

When inputting address 25_H

The following abbreviations are available.

When inputting address 00H

When inputting address 90H

Figure 11 Examples of address set: when valid address data width is 8 bits

3. Write

After address set, level of R/\overline{W} is sent to the S-2510A.

When R/W is low, the S-2510A goes into write mode and DATA I/O becomes the input pin. Data is input from DATA I/O synchronized with DTCLK after dummy clock, and is read at rise of DTCLK. Read data is stored temporarily in latch until bit number of data amounts to data width, then it is written in memory. Therefore if 2-bit data (2 DTCLKs after dummy clock) is sent when data width is 4 bits, the data is not written in memory. By sending DATA I/O and DTCLK continuously, address is automatically incremented and data is continuously written in memory.

Figures 12 to 14 show examples of write timing.

Figure 12 Write timing: when data width is 4 bits

Figure 13 R/W switch timing when write: when data width is 4 bits

Figure 14 R/W switch timing when write: continuous writing

4. Read

After address set, level of R/W is sent to the S-2510A.

When R/W is high, the S-2510A goes into read mode. Data is output at fall of dummy clock. Address is automatically incremented by outputting DTCLK to read data continuously.

When DATA I/O returns to high impedance from read mode, initialization is performed by ADCLK and DTCLK after data read for set data width is completed.

Figures 15 and 16 show examples of read timing.

Figure 15 R/W switch timing when read: when data width is 4 bits

Figure 16 R/W switch timing when read: continuous reading

5. Conclusion

Operation from initialization to read or write is illustrated in the following timing chart.

Figure 17 Operation timing

■ Dimensions (Unit:mm)

Figure 18

Markings

1 : S

2, 8, 9 : Blank

3 to 7 : Product name

10 to 12 : Lot No.

13: Assembly mark

14 : Last column of year

15: Manufacturing month: January = 1, February = 2, March = 3, April = 4,

May = 5, June = 6, July = 7, August = 8, September = 9

October = X, November = Y, December = Z

Characteristics

1. Operating current consumption (I_{CC}) - Ambient temperature (Ta)

2. Standby current (I_{SB}) - Ambient Temperature (Ta)

$$2.1 V_{\rm CC} = 1.5 V$$

$$2.2 V_{\rm CC} = 5.0 V$$

3. High level output current (I_{OH}) - Ambient temperature (Ta)

4. Low level output current (I_{OL}) - Ambient temperature (Ta)

