
PBYR1545CTF, PBYR1545CTX series

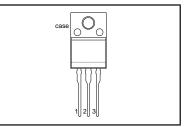
FEATURES

- Low forward volt drop
- Fast switching
- Reverse surge capability
- High thermal cycling performance
- Isolated mounting tab

QUICK REFERENCE DATA

GENERAL DESCRIPTION

Dual, common cathode schottky rectifier diodes in a plastic envelope with electrically isolated mounting tab. Intended for use as output rectifiers in low voltage, high frequency switched mode power supplies.


The PBYR1545CTF series is supplied in the SOT186 package. The PBYR1545CTX series is supplied in the SOT186A package.

PINNING

PIN	DESCRIPTION
1	anode 1 (a)
2	cathode (k)
3	anode 2 (a)
tab	isolated

SOT186A

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MA	Х.	UNIT
		PBYR15 PBYR15		40CTF 40CTX	45CTF 45CTX	
V _{RRM}	Peak repetitive reverse voltage		-	40	45	V
V_{RWM}	Working peak reverse voltage		-	40	45	V
V _R	Continuous reverse voltage	T _{hs} ≤ 89 °C	-	40	45	V
I _{O(AV)}	Average rectified output current (both diodes conducting)	square wave; $\delta = 0.5$; $T_{hs} \leq 93 \degree C$	-	15	5	A
I _{FRM}	Repetitive peak forward current per diode	square wave; $\delta = 0.5$; T _{hs} \leq 93 °C	-	1	5	A
I _{FSM}	Non-repetitive peak forward current per diode	t = 10 ms t = 8.3 ms sinusoidal; T _j = 125 °C prior to surge; with reapplied $V_{RRM(max)}$	-	10 11		AA
I _{RRM}	Peak repetitive reverse surge current per diode	pulse width and repetition rate limited by T _{imax}	-	1		A
\mathbf{T}_{j}	Operating junction temperature		-	15	0	°C
T _{stg}	Storage temperature		- 65	17	5	°C

PBYR1545CTF, PBYR1545CTX series

ISOLATION LIMITING VALUE & CHARACTERISTIC

 $T_{hs} = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	Peak isolation voltage from all terminals to external heatsink	SOT186 package; R.H. \leq 65%; clean and dustfree	-	-	1500	V
V _{isol}	R.M.S. isolation voltage from all terminals to external heatsink	SOT186A package; f = 50-60 Hz; sinusoidal waveform; R.H. \leq 65%; clean and dustfree	-	-	2500	V
C _{isol}	Capacitance from pin 2 to external heatsink	f = 1 MHz	-	10	-	pF

THERMAL RESISTANCES

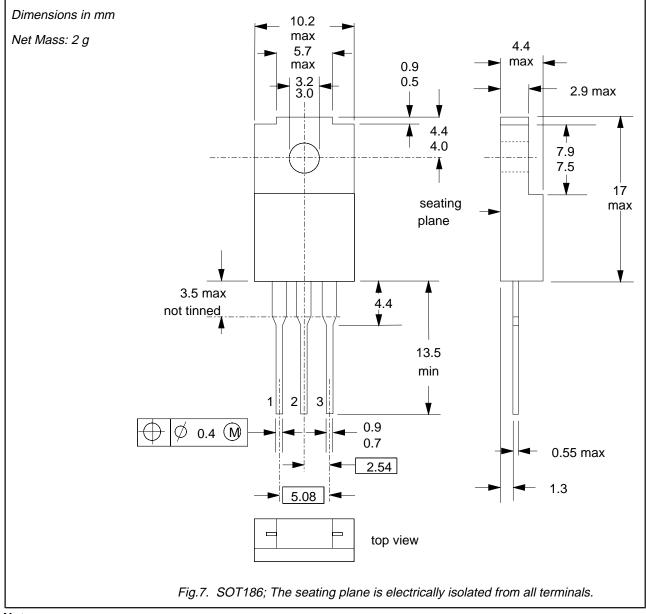
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-hs}	Thermal resistance junction	per diode	-	-	6	K/W
	to heatsink	both diodes (with heatsink compound)	-	-	5.2	K/W
R _{th j-a}	Thermal resistance junction to ambient	in free air	-	55	-	K/W

ELECTRICAL CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	Forward voltage	I _F = 7.5 A; T _i = 125°C	-	0.44	0.57	V
· ·		I _F = 15 A; T _i = 125°C	-	0.63	0.72	V
		$I_{\rm F} = 15 {\rm A}^{-1}$	-	0.62	0.84	V
I _R	Reverse current	$\dot{V}_{R} = V_{RWM}$	-	0.22	1	mA
		V _R = V _{RWM} ; T _j = 100°C V _R = 5 V; f = 1 MHz, T _i = 25°C to 125°C	-	18	25	mA
C _d	Junction capacitance	$V_{R}^{A} = 5 \text{ V}; \text{ f} = 1 \text{ MHz}, \text{ T}_{j} = 25 \text{ °C to } 125 \text{ °C}$	-	270	-	pF

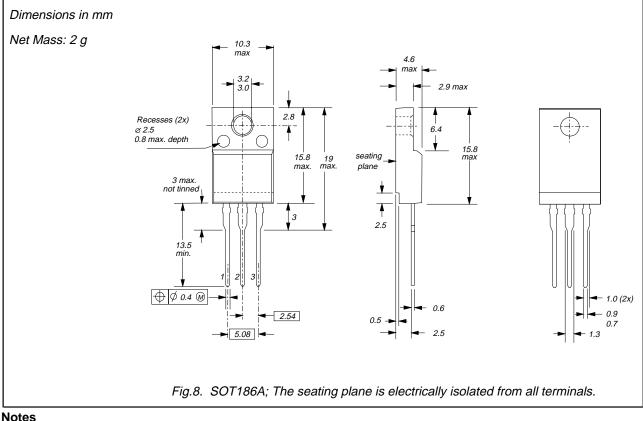
PBYR1545CTF, PBYR1545CTX series


Rectifier diodes Schottky barrier

Ths(max) (C) Forward dissipation, PF (W) Reverse current, IR (mA) 8 100 $V_0 = 0.42 V$ Rs = 0.02 Obr 108 7 D = 1.0 125 C 6 114 10 0.5 100 C 120 5 0.2 4 126 _75 C 1 3 132 50 C - to п 2 138 0.1 Tj = 25 C 144 1 0 150 0.01 4 6 8 Average forward current, IF(AV) (A) 0 2 10 12 25 Reverse voltage, VR (V) 0 50 Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; square current waveform where Fig.4. Typical reverse leakage current per diode; Fig.1. $I_R = f(V_R)$; parameter T_i $I_{F(AV)} = I_{F(RMS)} \times \sqrt{D}.$ Ths(max) / C 102 Forward dissipation, PF (W) Cd / pF 8 1000 Vo = 0 42 V Rs = 0 02 Ohn 108 7 114 6 a = 1.57 5 120 2.8 126 4 100 3 132 2 138 144 1 10 150 0 10 100 2 3 4 5 6 Average forward current, IF(AV) (A) 0 7 8 VR / V Fig.2. Maximum forward dissipation $P_F = f(I_{F(AV)})$ per diode; sinusoidal current waveform where a = formFig.5. Typical junction capacitance per diode; $C_d = f(V_R)$; f = 1 MHz; $T_j = 25^{\circ}C$ to $125^{\circ}C$. factor = $I_{F(RMS)} / I_{F(AV)}$. Transient thermal impedance, Zth j-hs (K/W) Forward current, IF (A) 10 50 Tj = 25 C → Tj = 125 C 40 30 typ 20 0.1 D = ≥max 10 : __+| ⊤ |+__ ' 0.01 L___ 1us 0 L. 0 10us 100us 1ms 10ms 100ms 1s 10s 0.4 0.6 0.8 1 Forward voltage, VF (V) 0.2 1.2 1.4 pulse width, tp (s) Fig.3. Typical and maximum forward characteristic Fig.6. Transient thermal impedance per diode; $Z_{thj\cdot hs} = f(t_p).$ $I_F = f(V_F)$; parameter T_i

PBYR1545CTF, PBYR1545CTX series

MECHANICAL DATA



Notes

Refer to mounting instructions for F-pack envelopes.
Epoxy meets UL94 V0 at 1/8".

PBYR1545CTF, PBYR1545CTX series

MECHANICAL DATA

Notes

Refer to mounting instructions for F-pack envelopes.
Epoxy meets UL94 V0 at 1/8".

PBYR1545CTF, PBYR1545CTX series

DEFINITIONS

Data sheet status				
Objective specification This data sheet contains target or goal specifications for product development.				
Preliminary specification This data sheet contains preliminary data; supplementary data may be published la				
Product specification	This data sheet contains final product specifications.			
Limiting values				
or more of the limiting val operation of the device at	in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one ues may cause permanent damage to the device. These are stress ratings only and these or at any other conditions above those given in the Characteristics sections of applied. Exposure to limiting values for extended periods may affect device reliability.			
Application information				
Where application inform	ation is given, it is advisory and does not form part of the specification.			
© Philips Electronics N	V. 1998			
All rights are reserved. R copyright owner.	All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.			
The information procente	d in this desument does not form part of any guatation or contract, it is baliayed to be			

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.