
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

Philips Semiconductors

74HC/HCT280

FEATURES

- · Word-length easily expanded by cascading
- Similar pin configuration to the "180" for easy system up-grading
- Generates either odd or even parity for nine data bits
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT280 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT280 are 9-bit parity generators or checkers commonly used to detect errors in high-speed data

transmission or data retrieval systems. Both even and odd parity outputs are available for generating or checking even or odd parity up to 9 bits.

The even parity output (Σ_E) is HIGH when an even number of data inputs $(I_0 \text{ to } I_8)$ are HIGH. The odd parity output (Σ_0) is HIGH when an odd number of data inputs are HIGH.

Expansion to larger word sizes is accomplished by tying the even outputs (Σ_E) of up to nine parallel devices to the data inputs of the final stage. For a single-chip 16-bit even/odd parity generator/checker, see PC74HC/HCT7080.

APPLICATIONS

- 25-line parity generator/checker
- 81-line parity generator/checker

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	ТҮР	UNIT		
STWIDOL	FARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	I_n to Σ_E		17	18	ns	
	I_n to Σ_O		20	22	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipationcapacitance per package	notes 1 and 2	65	65	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

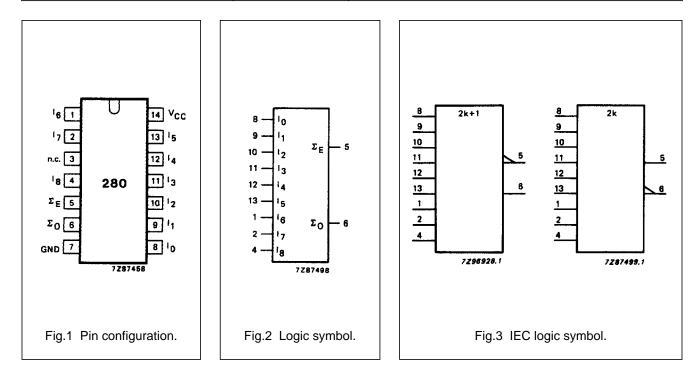
 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

C_L = output load capacitance in pF

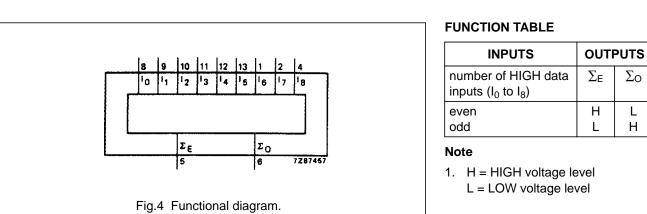
V_{CC} = supply voltage in V

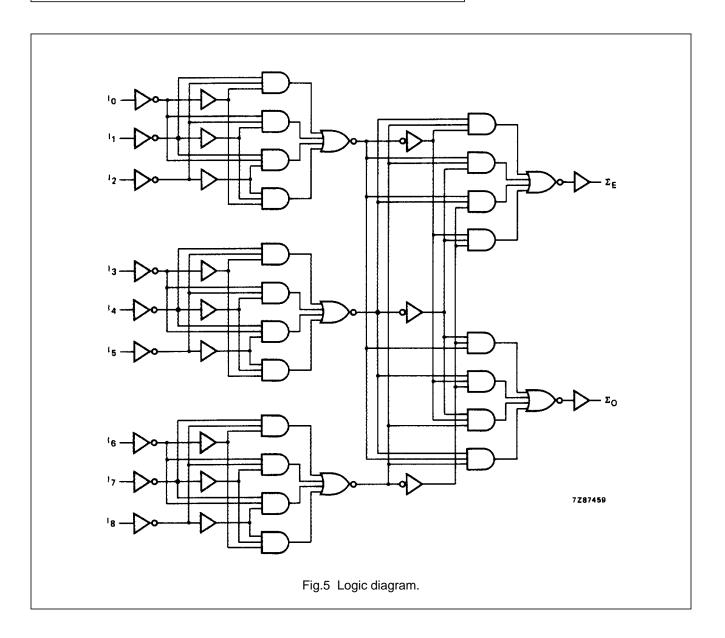
2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is V_{I} = GND to V_{CC} – 1.5 V


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".


December 1990


PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	AND FUNCTION				
8, 9, 10, 11, 12, 13, 1, 2, 4	I ₀ to I ₈	data inputs					
5, 6	Σ_{E} , Σ_{O}	parity outputs					
7	GND	ground (0 V)					
14	V _{CC}	positive supply voltage					

Product specification

Downloaded from Datasheet.su

4

74HC/HCT280

74HC/HCT280

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Out put capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)							UNIT	TEST CONDITIONS	
SYMBOL	PARAMETER	74HC									WAVEFORMS
STNIBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORINIS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_E		55 20 16	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_O		63 23 18	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

74HC/HCT280

DC CHARACTERISTICS FOR 74HCT

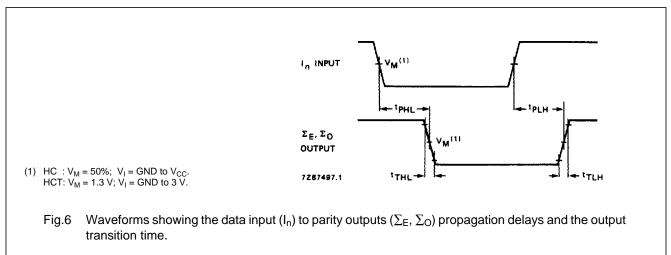
For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

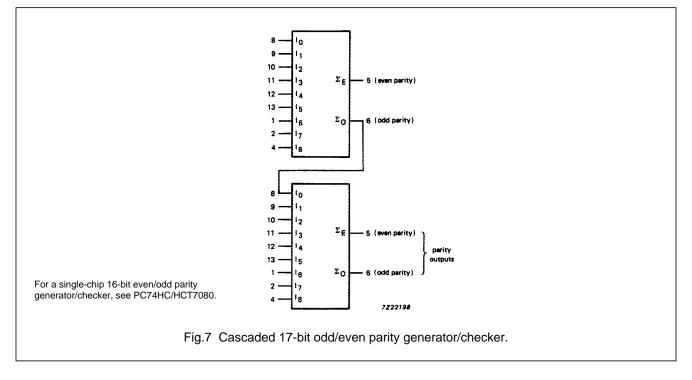
Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
l _n	1.0


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$


SYMBOL	PARAMETER	T _{amb} (°C)							TEST CONDITIONS		
		74HCT								WAVEFORMS	
		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(-)	
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_E		21	42		53		63	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay I_n to Σ_O		26	45		56		68	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6

74HC/HCT280

AC WAVEFORMS

APPLICATION INFORMATION

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".