INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT163Presettable synchronous 4-bit binary counter; synchronous reset

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors

74HC/HCT163

FEATURES

- Synchronous counting and loading
- Two count enable inputs for n-bit cascading
- Positive-edge triggered clock
- · Synchronous reset
- · Output capability: standard
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT163 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT163 are synchronous presettable binary counters which feature an internal look-ahead carry and can be used for high-speed counting.

Synchronous operation is provided by having all flip-flops clocked simultaneously on the positive-going edge of the clock (CP).

The outputs $(Q_0 \text{ to } Q_3)$ of the counters may be preset to a HIGH or LOW level. A LOW level at the parallel enable input (\overline{PE}) disables the counting action and causes the data at the data inputs $(D_0 \text{ to } D_3)$ to be loaded into the counter on the positive-going edge of the clock (providing that the set-up and hold time requirements for \overline{PE} are met).

Preset takes place regardless of the levels at count enable inputs (CEP and CET).

For the "163" the clear function is synchronous.

A LOW level at the master reset input (\overline{MR}) sets all four outputs of the flip-flops $(Q_0 \text{ to } Q_3)$ to LOW level after the next positive-going transition on the clock (CP) input (provided that the set-up and hold time requirements for \overline{MR} are met). This action occurs regardless of the levels at \overline{PE} , CET and CEP inputs.

This synchronous reset feature enables the designer to modify the maximum count with only one external NAND gate.

The look-ahead carry simplifies serial cascading of the counters. Both count enable inputs (CEP and CET) must be HIGH to count. The CET input is fed forward to enable the terminal count output (TC). The TC output thus enabled will produce a HIGH output pulse of a duration approximately equal to a HIGH level output of Q₀. This pulse can be used to enable the next cascaded stage.

The maximum clock frequency for the cascaded counters is determined by the CP to TC propagation delay and CEP to CP set-up time, according to the following formula:

$$f_{max} = \frac{1}{t_{P (max)} (CP \text{ to TC}) + t_{SU} (CEP \text{ to CP})}$$

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYI	PICAL	UNIT
STWIBOL	FARAMETER	CONDITIONS	нс	нст	ONIT
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF};$			
	CP to Q _n	$C_L = 15 \text{ pF};$ $V_{CC} = 5 \text{ V}$	17	20	ns
	CP to TC		21	25	ns
	CET to TC		11	14	ns
f _{max}	maximum clock frequency		51	50	MHz
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	33	35	pF

Notes

 C_{PD} is used to determine the dynamic power dissipation (P_D in µW):

$$P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} +$$

$$\sum (C_{L} \times V_{CC}^{2} \times f_{o})$$

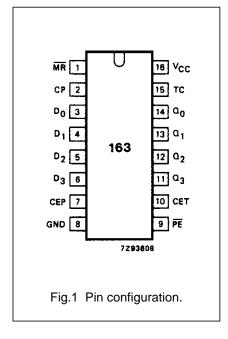
where:

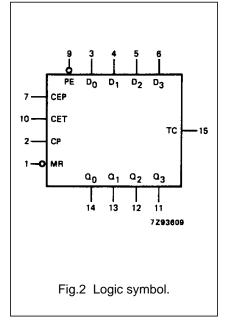
 $\begin{array}{l} f_i & = \text{input frequency in MHz} \\ f_o & = \text{output frequency in MHz} \\ \sum \left(C_L \times V_{CC}^2 \times f_o \right) = \text{sum of} \\ \text{outputs} \end{array}$

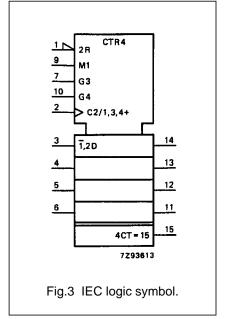
 C_L = output load capacitance in pF

 V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_1 = GND$ to $V_{CC} - 1.5$ V

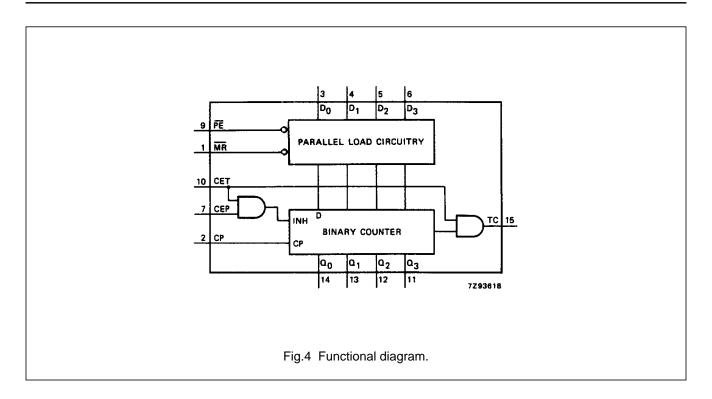

74HC/HCT163


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

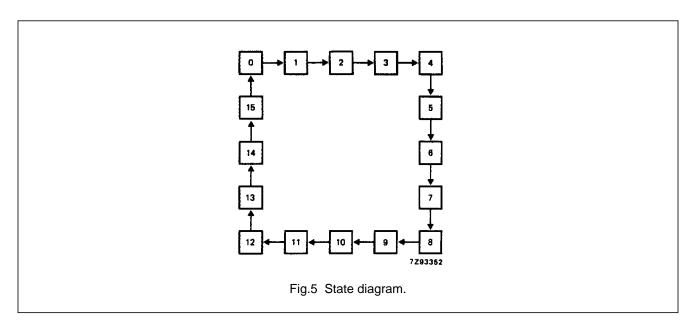
PIN NO.	SYMBOL	NAME AND FUNCTION
1	MR	synchronous master reset (active LOW)
2	CP	clock input (LOW-to-HIGH, edge-triggered)
3, 4, 5, 6	D ₀ to D ₃	data inputs
7	CEP	count enable input
8	GND	ground (0 V)
9	PE	parallel enable input (active LOW)
10	CET	count enable carry input
14, 13, 12, 11	Q ₀ to Q ₃	flip-flop outputs
15	TC	terminal count output
16	V _{CC}	positive supply voltage

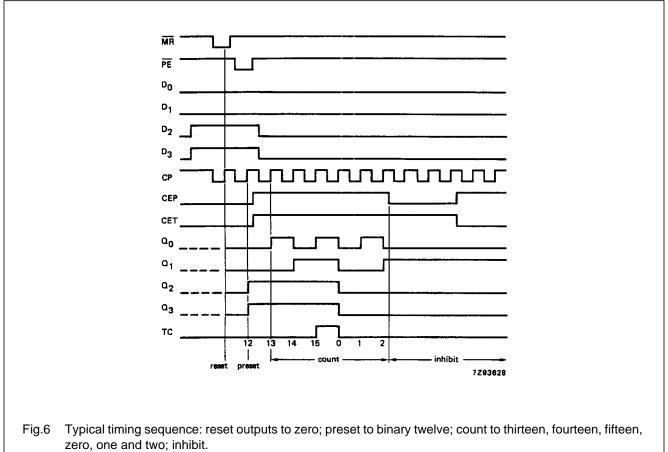


Presettable synchronous 4-bit binary counter; synchronous reset

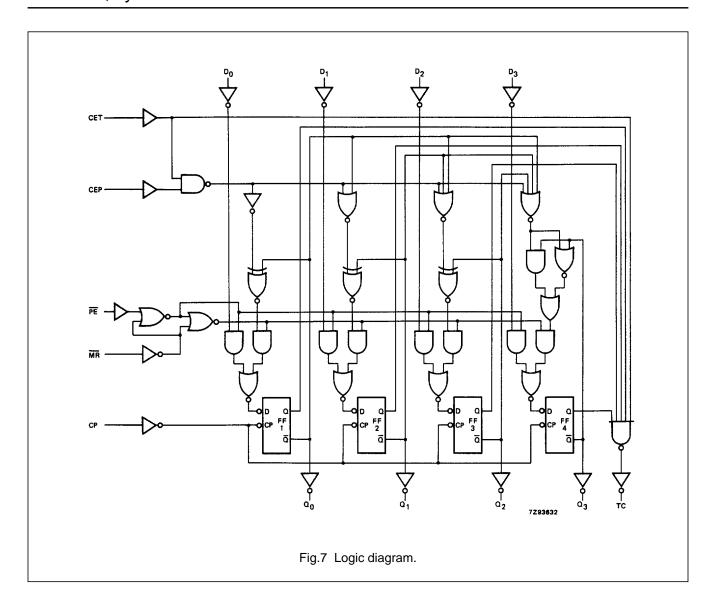
74HC/HCT163

FUNCTION TABLE


OPERATING MODE			OUTPUTS					
OPERATING MODE	MR	СР	CEP	CET	PE	D _n	Q _n	TC
reset (clear)	I	1	Х	Х	Х	Х	L	L
parallel load	h h	↑ ↑	X X	X X	I I	l h	L H	L (1)
count	h	1	h	h	h	Х	count	(1)
hold (do nothing)	h h	X X	I X	X I	h h	X X	q _n q _n	(1) L


Notes

- 1. The TC output is HIGH when CET is HIGH and the counter is at terminal count (HHHHH).
 - H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - ${\bf q}$ = lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition
 - X = don't care
 - ↑ = LOW-to-HIGH CP transition


Presettable synchronous 4-bit binary counter; synchronous reset

74HC/HCT163

74HC/HCT163

Presettable synchronous 4-bit binary counter; synchronous reset

74HC/HCT163

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C)								TEST CONDITIONS		
SYMBOL	DADAMETED	74HC									WAVEEODIA	
	PARAMETER	+25			-40 to +85 −4		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		55 20 16	185 37 31		230 46 39		280 56 48	ns	2.0 4.5 6.0	Fig.8	
t _{PHL} / t _{PLH}	propagation delay CP to TC		69 25 20	215 43 37		270 54 46		320 65 55	ns	2.0 4.5 6.0	Fig.8	
t _{PHL} / t _{PLH}	propagation delay CET to TC		36 13 10	120 24 20		150 30 26		180 36 31	ns	2.0 4.5 6.0	Fig.9	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 8 and 9	
t _W	clock pulse width HIGH or LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.8	
t _{su}	set-up time MR, D _n to CP	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Figs 10 and 11	
t _{su}	set-up time PE to CP	80 16 14	22 8 6		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.10	
t _{su}	set-up time CEP, CET to CP	175 35 30	58 21 17		220 44 37		265 53 45		ns	2.0 4.5 6.0	Fig.12	
t _h	hold time D _n , PE, CEP, CET, MR to CP	0 0 0	-14 -5 -4		0 0 0		0 0 0		ns	2.0 4.5 6.0	Figs 10, 11 and 12	
f _{max}	maximum clock pulse frequency	5 27 32	15 46 55		4 22 26		4 18 21		MHz	2.0 4.5 6.0	Fig.8	

Presettable synchronous 4-bit binary counter; synchronous reset

74HC/HCT163

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
MR	0.95
СР	1.10
CEP	0.25
D _n	0.25
CET	0.75
PE	0.30

Presettable synchronous 4-bit binary counter; synchronous reset

74HC/HCT163

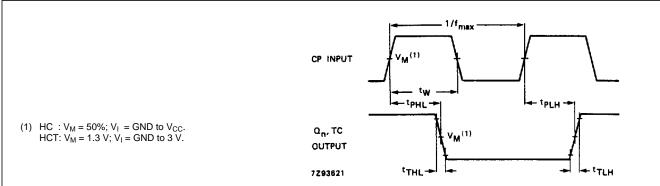
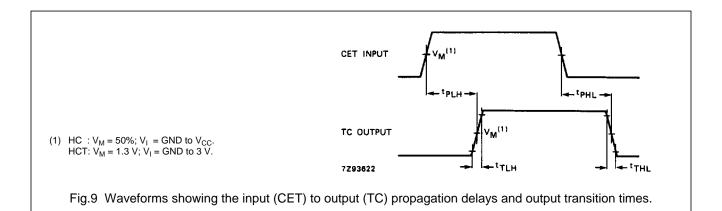
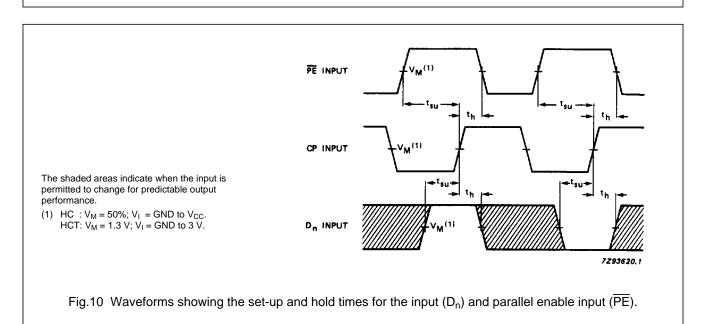
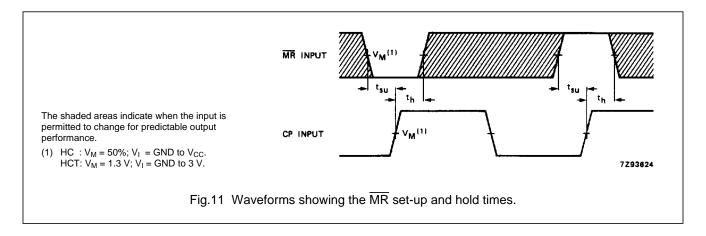
AC CHARACTERISTICS FOR 74HCT

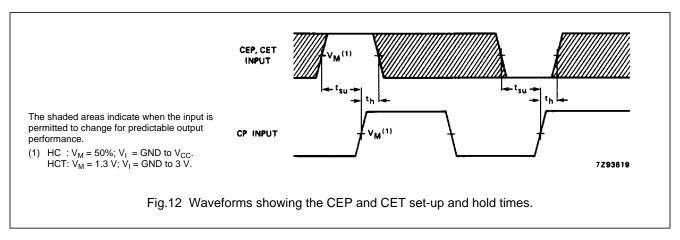
 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

		T _{amb} (°C) 74HCT								TE	TEST CONDITIONS	
SYMBOL	PARAMETER								UNIT		WAVEFORMS	
		+25			-40 to +85 -40		-40 to	-40 to +125		V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(-,		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		23	39		49		59	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay CP to TC		29	49		61		74	ns	4.5	Fig.8	
t _{PHL} / t _{PLH}	propagation delay CET to TC		17	32		44		48	ns	4.5	Fig.9	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 8 and 9	
t _W	clock pulse width HIGH or LOW	20	6		25		30		ns	4.5	Fig.8	
t _{su}	set-up time MR, D _n to CP	20	9		25		30		ns	4.5	Figs 10 and 11	
t _{su}	set-up time PE to CP	20	11		25		30		ns	4.5	Fig.10	
t _{su}	set-up time CEP, CET to CP	40	24		50		60		ns	4.5	Fig.12	
t _h	hold time D _n , PE, CEP, CET, MR to CP	0	-5		0		0		ns	4.5	Figs 10, 11 and 12	
f _{max}	maximum clock pulse frequency	26	45		21		17		MHz	4.5	Fig.8	

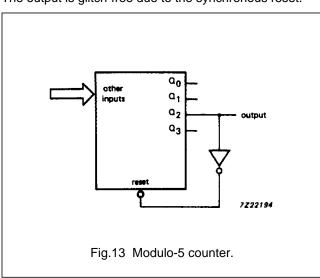
74HC/HCT163

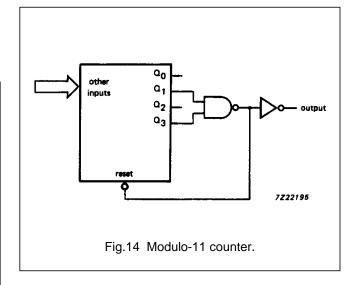
AC WAVEFORMS


Fig.8 Waveforms showing the clock (CP) to outputs (Q_n, TC) propagation delays, the clock pulse width, the output transition times and the maximum clock frequency.

74HC/HCT163





APPLICATION INFORMATION

The HC/HCT163 facilitate designing counters of any modulus with minimal external logic.

The output is glitch-free due to the synchronous reset.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".