74LV74 Dual D-type flip-flop with set and reset; positive edge-trigger Rev. 03 — 28 September 2007 Product data shee Product data sheet

1. General description

The 74LV74 is a low-voltage Si-gate CMOS device that is pin and function compatible with 74HC74 and 74HCT74.

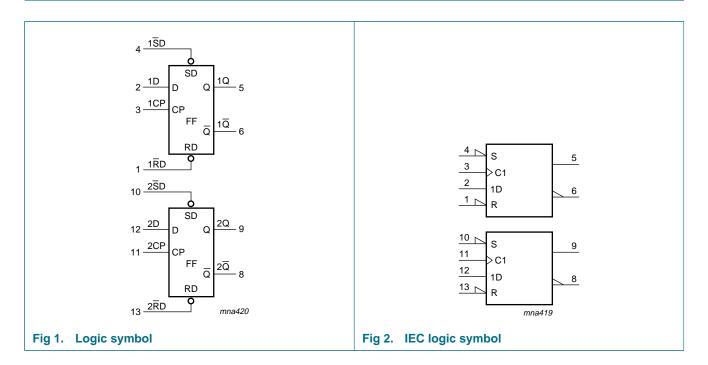
The device is a dual positive edge triggered D-type flip-flop with individual data (D) inputs, clock (CP) inputs, set (\overline{SD}) and (\overline{RD}) inputs, and complementary Q and \overline{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

Schmitt trigger action in the clock input makes the circuit highly tolerant of slower clock rise and fall times.

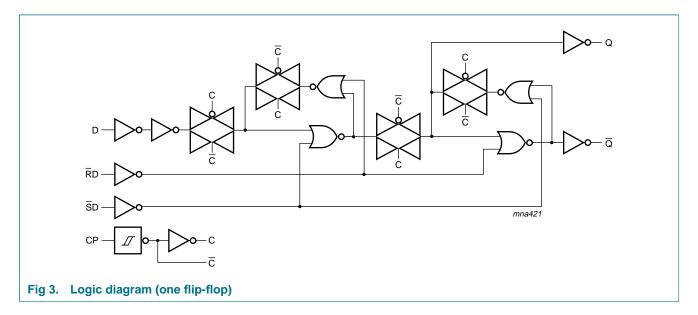
2. **Features**

- Wide operating voltage: 1.0 V to 5.5 V
- Optimized for low voltage applications: 1.0 V to 3.6 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Typical output ground bounce < 0.8 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- Typical output V_{OH} undershoot > 2 V at V_{CC} = 3.3 V and T_{amb} = 25 °C
- ESD protection:
 - ◆ HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

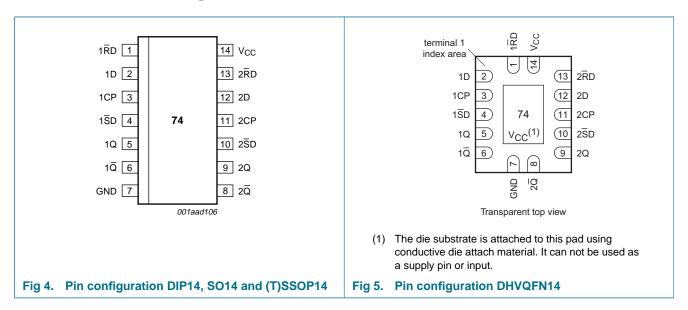


3. Ordering information

Table 1. Ordering information


Type number	Package			
	Temperature range	Name	Description	Version
74LV74N	-40 °C to +125 °C	DIP14	plastic dual in-line package; 14 leads (300 mil)	SOT27-1
74LV74D	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74LV74DB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74LV74PW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74LV74PW	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 \times 3 \times 0.85 mm	SOT762-1

4. Functional diagram


NXP Semiconductors 74LV74

Dual D-type flip-flop with set and reset; positive edge-trigger

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol (n = 1, 2)	Pin	Description
$n\overline{R}D$	1, 13	asynchronous reset-direct input (active LOW)
nD	2, 12	data input
nCP	3, 11	clock input (LOW-to-HIGH, edge-triggered)
nSD	4, 10	asynchronous set-direct input (active LOW)
nQ	5, 9	true flip-flop output
nQ	6, 8	complement flip-flop output
GND	7	ground (0 V)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table [1]

Inputs		Outputs			
nSD	nRD	nCP	nD	nQ	nQ
L	Н	X	X	Н	L
Н	L	X	X	L	Н
L	L	X	X	Н	Н

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care

Table 4. Function table^[1]

Inputs			Outputs		
nSD	nRD	nCP	nD	nQ _{n+1}	nQ _{n+1}
Н	Н	1	L	L	Н
Н	Н	\uparrow	Н	Н	L

^[1] H = HIGH voltage level; L = LOW voltage level

^{↑ =} LOW-to-HIGH transition

 Q_{n+1} = state after the next LOW-to-HIGH CP transition

7. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

		, ,			,
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	[1] _	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	[1] _	±50	mA
I _O	output current	$V_O = -0.5 \text{ V to } (V_{CC} + 0.5 \text{ V})$	-	±25	mA
I _{CC}	supply current		-	50	mA
I _{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			
		DIP14 package	[2] _	750	mW
		SO14 package	[3] _	500	mW
		(T)SSOP14 package	[4] _	500	mW
		DHVQFN14 package	<u>[5]</u> _	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	Min	Тур	Max	Unit
supply voltage[1]		1.0	3.3	5.5	V
input voltage		0	-	V_{CC}	V
output voltage		0	-	V_{CC}	V
ambient temperature		-40	+25	+125	°C
input transition rise and fall rate[2]	$V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$	-	-	500	ns/V
	V_{CC} = 2.0 V to 2.7 V	-	-	200	ns/V
	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	100	ns/V
	$V_{CC} = 3.6 \text{ V to } 5.5 \text{ V}$	-	-	50	ns/V
	supply voltage input voltage output voltage ambient temperature	supply voltage [1] input voltage output voltage ambient temperature input transition rise and fall rate [2] $V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$ $V_{CC} = 2.0 \text{ V to } 2.7 \text{ V}$ $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to V_{CC} = 5.5 V, but LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

74LV74_3 © NXP B.V. 2007. All rights reserved.

^[2] Ptot derates linearly with 12 mW/K above 70 °C.

^[3] P_{tot} derates linearly with 8 mW/K above 70 °C.

^[4] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

^[5] P_{tot} derates linearly with 4.5 mW/K above 60 °C.

^[2] Except for clock inputs, which have Schmitt trigger action..

9. Static characteristics

Table 7. Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	35 °C	-40 °C to	+125 °C	Uni
			Min	Typ[1]	Max	Min	Max	
V _{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	2.0	-	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	0.7V _{CC}	-	-	0.7V _{CC}	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	8.0	-	0.8	V
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	-	0.3V _{CC}	-	0.3V _{CC}	V
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		$I_O = -100 \mu A; V_{CC} = 1.2 V$	-	1.2	-	-	-	V
		$I_O = -100 \mu A; V_{CC} = 2.0 \text{ V}$	1.8	2.0	-	1.8	-	V
		$I_O = -100 \mu A; V_{CC} = 2.7 V$	2.5	2.7	-	2.5	-	V
		$I_O = -100 \mu A; V_{CC} = 3.0 \text{ V}$	2.8	3.0	-	2.8	-	V
		$I_O = -100 \mu A; V_{CC} = 4.5 V$	4.3	4.5	-	4.3	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	2.82	-	2.2	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.6	4.2	-	3.5	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}						
		I_O = 100 μ A; V_{CC} = 1.2 V	-	0	-	-	-	V
		I_O = 100 μ A; V_{CC} = 2.0 V	-	0	0.2	-	0.2	V
		I_O = 100 μ A; V_{CC} = 2.7 V	-	0	0.2	-	0.2	V
		$I_O = 100 \ \mu A; \ V_{CC} = 3.0 \ V$	-	0	0.2	-	0.2	V
		$I_O = 100 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.2	-	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.25	0.40	-	0.50	V
		I_{O} = 12 mA; V_{CC} = 4.5 V	-	0.35	0.55	-	0.65	V
l _i	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	20	-	80	μΑ
Δl _{CC}	additional supply current	per input; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	500	-	850	μΑ
Cı	input capacitance		-	3.5	-	-	-	рF

^[1] Typical values are measured at T_{amb} = 25 °C.

10. Dynamic characteristics

Table 8. Dynamic characteristics GND = 0 V; For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	–40 °C to	+125 °C	Uni
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	nCP to nQ, nQ; see Figure 6	[2]						,
	delay	V _{CC} = 1.2 V		-	70	-	-	-	ns
		V _{CC} = 2.0 V		-	24	44	-	56	ns
		V _{CC} = 2.7 V		-	18	28	-	41	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	11	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	13	26	-	33	ns
		V _{CC} = 4.5 V to 5.5 V	[3]	-	9.5	17	-	23	ns
		$n\overline{S}D$ to nQ , $n\overline{Q}$; $n\overline{R}D$ to nQ , $n\overline{Q}$; see Figure 7							
		V _{CC} = 1.2 V		-	90	-	-	-	ns
		$V_{CC} = 2.0 \text{ V}$		-	31	46	-	58	ns
		$V_{CC} = 2.7 \text{ V}$		-	23	34	-	43	ns
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	14	-	-	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	17	27	-	34	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]	-	12	19	-	24	ns
t _W	pulse width	clock HIGH or LOW; see Figure 6; set or reset LOW; see Figure 7							
		V _{CC} = 2.0 V		34	10	-	41	-	ns
		V _{CC} = 2.7 V		25	8	-	30	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	20	7	-	24	-	ns
		V _{CC} = 4.5 V to 5.5 V	[3]	15	6	-	18	-	ns
t _{rec}	recovery time	set or reset; see Figure 7							
		V _{CC} = 1.2 V		-	5	-	-	-	ns
		$V_{CC} = 2.0 \text{ V}$		14	2	-	15	-	ns
		$V_{CC} = 2.7 \text{ V}$		10	1	-	11	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	8	1	-	9	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]	6	1	-	7	-	ns
t _{su}	set-up time	nD to nCP; see Figure 6							
		V _{CC} = 1.2 V		-	10	-	-	-	ns
		$V_{CC} = 2.0 \text{ V}$		22	4	-	26	-	ns
		$V_{CC} = 2.7 V$		12	3	-	15	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	8	2	-	10	-	ns
		V _{CC} = 4.5 V to 5.5 V	[3]	6	1	-	8	-	ns

Table 8. Dynamic characteristics ...continued GND = 0 V: For test circuit see Figure 8.

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _h	hold time	nD to nCP; see Figure 6					'	'	
		V _{CC} = 1.2 V		-	-10	-	-	-	ns
		V _{CC} = 2.0 V		3	-2	-	3	-	ns
		$V_{CC} = 2.7 \text{ V}$		3	-2	-	3	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	3	-2	-	3	-	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]	3	-2	-	3	-	ns
f _{max}	maximum	see Figure 6							
	frequency	V _{CC} = 2.0 V		14	40	-	12	-	MHz
		V _{CC} = 2.7 V		50	90	-	40	-	MHz
		$V_{CC} = 3.3 \text{ V}; C_L = 15 \text{ pF}$		-	76	-	-	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	60	100	-	48	-	MHz
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	<u>[3]</u>	70	110	-	56	-	MHz
C_{PD}	power dissipation capacitance	per flip-flop; $V_I = GND$ to V_{CC}	<u>[4]</u>	-	24	-	-	-	pF

^[1] Typical values are measured at $T_{amb} = 25$ °C.

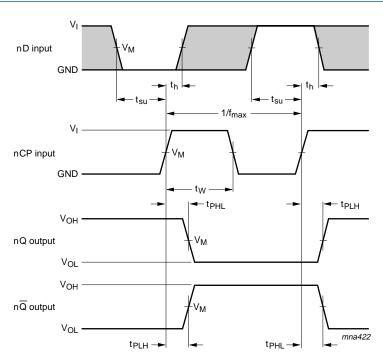
 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz; f_o = output frequency in MHz

C_L = output load capacitance in pF

V_{CC} = supply voltage in Volts

N = number of inputs switching

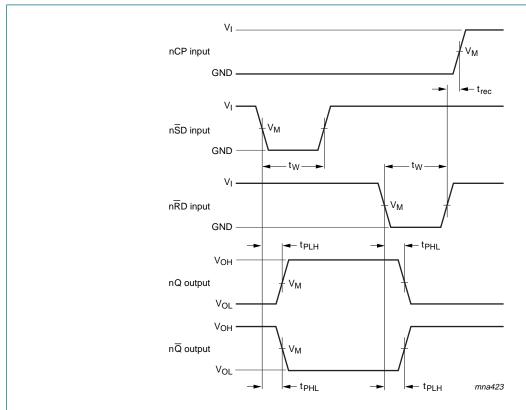

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs

^[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V and V_{CC} = 5.0 V).

^[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

11. Waveforms

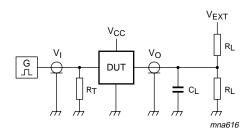


The shaded areas indicate when the input is permitted to change for predictable output performance.

Measurement points are given in Table 9.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical output voltage drops that occur with the output load.

Fig 6. The clock input (nCP) to output (nQ, $n\overline{Q}$) propagation delays, the clock pulse width, the nD to nCP set-up, the nCP to nD hold times, and the maximum frequency


Measurement points are given in Table 9.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical output voltage drops that occur with the output load.

Fig 7. The set $(n\overline{S}D)$ and reset $(n\overline{R}D)$ input to output $(nQ, n\overline{Q})$ propagation delays, the set and reset pulse widths, and the $n\overline{R}D$ to nCP recovery time

Table 9. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
≥ 4.5 V	0.5V _{CC}	0.5V _{CC}

Test data is given in Table 10.

Definitions test circuit:

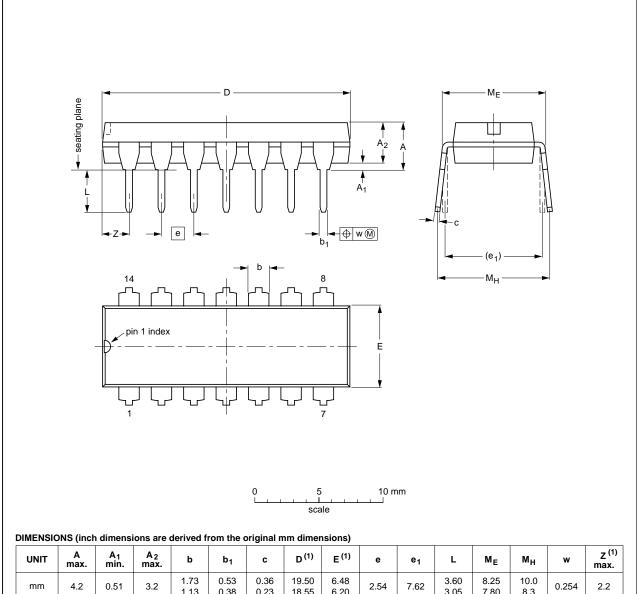
R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_o of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 8. Load circuit for switching times


Table 10. Test data

Supply voltage	Input		Load		V _{EXT}			
V _{CC}	VI	V _I t _r , t _f		R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
< 2.7 V	V_{CC}	≤ 2.5 ns	50 pF	1 kΩ	open	GND	2V _{CC}	
2.7 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	1 kΩ	open	GND	2V _{CC}	
≥ 4.5 V	V_{CC}	≤ 2.5 ns	50 pF	1 kΩ	open	GND	2V _{CC}	

12. Package outline

DIP14: plastic dual in-line package; 14 leads (300 mil)

SOT27-1

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	M _E	Мн	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.02	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.


OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT27-1	050G04	MO-001	SC-501-14		99-12-27 03-02-13

Fig 9. Package outline SOT27-1 (DIP14)

74LV74_3 © NXP B.V. 2007. All rights reserved.

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

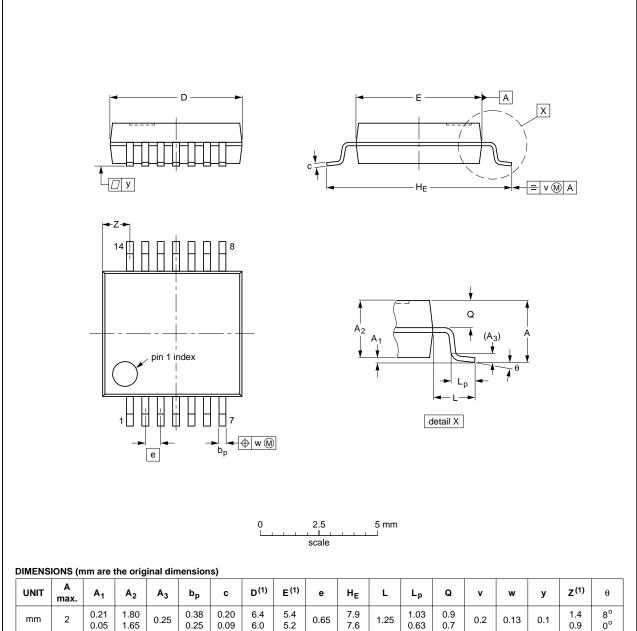

OUTLINE		REFER	ENCES	EUROPEAN		
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012			99-12-27 03-02-19	

Fig 10. Package outline SOT108-1 (SO14)

74LV74_3 © NXP B.V. 2007. All rights reserved.

SSOP14: plastic shrink small outline package; 14 leads; body width 5.3 mm

SOT337-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.4 0.9	8° 0°

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

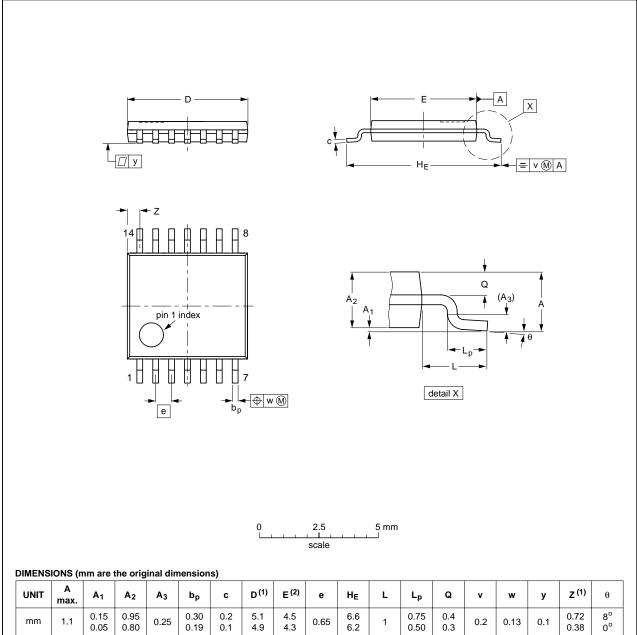

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	155UE DATE
SOT337-1		MO-150			-99-12-27 03-02-19

Fig 11. Package outline SOT337-1 (SSOP14)

© NXP B.V. 2007. All rights reserved.

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

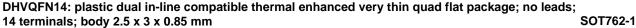

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT402-1		MO-153			99-12-27 03-02-18

Fig 12. Package outline SOT402-1 (TSSOP14)

74LV74_3 © NXP B.V. 2007. All rights reserved.

16 of 19

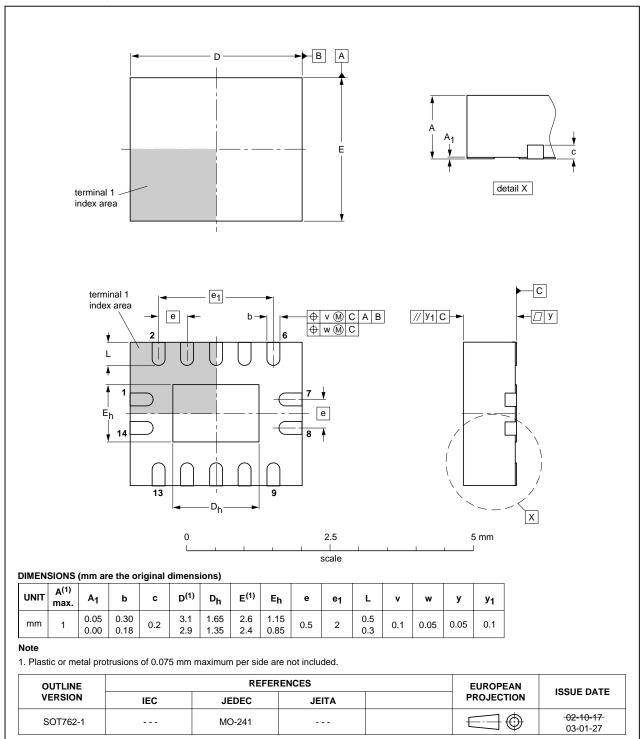


Fig 13. Package outline SOT762-1 (DHVQFN14)

74LV74_3 © NXP B.V. 2007. All rights reserved.

13. Abbreviations

Table 11. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74LV74_3	20070928	Product data sheet	-	74LV74_2				
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guideli of NXP Semiconductors. 							
	 Legal texts have been adapted to the new company name when appropriate. 							
	 Section 3: DHVQF 	N14package added.						
	 Section 7: derating 	values added for DHVQI	FN14 package.					
	 Section 12: outline drawing added for DHVQFN14 package. 							
74LV74_2	19980420	Product specification	-	74LV74_1				
74LV74_1	19961107	Product specification	-	-				

17 of 19

NXP Semiconductors 74LV74

Dual D-type flip-flop with set and reset; positive edge-trigger

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

74LV74 3

17. Contents

1	General description
2	Features
3	Ordering information
4	Functional diagram
5	Pinning information
5.1	Pinning
5.2	Pin description
6	Functional description4
7	Limiting values5
8	Recommended operating conditions 5
9	Static characteristics 6
10	Dynamic characteristics
11	Waveforms 9
12	Package outline 12
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks18
16	Contact information 18
17	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 28 September 2007 Document identifier: 74LV74_3

