E.H.T. AVALANCHE VERY FAST SOFT-RECOVERY DIODES*

E.H.T. rectifier diodes in hermetically-sealed, axially-leaded glass envelope and designed for c.t.v. and monitor applications with frequencies up to 128 kHz. They are suitable for use in high-voltage application such as multipliers and especially in diode-split transformers.

Because of the small envelope, the diode should be used in a suitable insulating medium (resin, oil or SF6 gas).

Features:

- Non-snap-off characteristics;
- Capable of absorbing avalanche energy e.g. during flash-over in picture tubes.

QUICK REFERENCE DATA

			BY619	BY620		
Working reverse voltage	V_{RW}	max.	12	12	kV	
Repetitive peak reverse voltage	v_{RRM}	max.	15	17	kV	
Average forward current	^I F(AV)	max.	4		mΑ	
Junction temperature	τ_{j}	max.	120		oС	
Reverse recovery charge	$Q_{\mathbf{s}}$	<	0,4		nC	
Reverse recovery time	t _{rr}	typ.	10	0	ns	

MECHANICAL DATA

Dimensions in mm

Fig. 1 SOD-61.

L = 28 min.

G = 11 max.

The BY619 cathode is indicated by a curry yellow band on the lead. The BY620 cathode is indicated by a filac band on the lead.

March 1991

483

^{*}See also "Custom made E.H.T. stacks" in section "General".

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

			BY619	BY620	
Working reverse voltage	$v_{\sf RW}$	max.	12	12	kV
Repetitive peak reverse voltage	v_{RRM}	max.	12	12	kV
Repetitive peak reverse voltage* t = 1 min.; T _{amb} = 25 °C	VRRM	max.	15	17	kV
Average forward current (averaged over any 20 ms period)	l _{F(AV)}	max.		mA	
Repetitive peak forward current**	1 _{FRM}	max.	50	mA	
Storage temperature	T_{stg}	65 to + 120			оC
Junction temperature	τ_{j}	max.	12	20	οС
CHARACTERISTICS					
T _j = 25 °C unless otherwise specified					
Forward voltage ▲ I _F = 100 mA; T _j = 120 °C	٧ _F	<	7	75	V
Reverse current $V_R = V_{RW}$; $T_j = 120 {}^{\circ}\text{C}$	I _R	<		3	μΑ
Reverse recovery when switched from $I_F = 100 \text{ mA to } V_R \ge 100 \text{ V}$ with $-dI_F/dt = 200 \text{ mA}/\mu s$					
recovery charge	Ω_{s}	<	0	,4	nC
recovery time at $I_R = 1 \text{ mA}$	t _{rr}	typ.	10	00	ns
fall time at $I_R = 1 \text{ mA}$	tf	>	4	10	ns

Fig. 2 Definitions of Q_{S} , t_{rr} and t_{f} .

- * Capable of withstanding the avalanche energy e.g. during flash-over in a picture tube.
- ** Capable of withstanding peak currents during flash-over in a picture tube.
- Measured under pulse conditions to avoid excessive dissipation.

484

June 1984

Fig. 3 Maximum permissible average forward current versus ambient temperature; the current includes losses due to reverse leakage. Diode to be mounted such that $R_{\mbox{\scriptsize th}}$ j-a < 120 K/W.

Fig. 4 ——
$$T_j = 25 \text{ °C}; --- T_j = 120 \text{ °C}.$$

Fig. 5 Typical operation circuit.

Fig. 6 Typical applied voltage.

March 1991