SILICON PLANAR VARIABLE CAPACITANCE DIODE

The BB249 is a variable capacitance diode in a miniature glass envelope intended for electronic tuning in v.h.f. television tuners with extended band I (FCC and OIRT-norm).

Diodes are supplied in matched sets (minimum 120 pieces and divisible by 12) and the capacitance difference between any two diodes in one set is less than 3% over the voltage range from 0,5 V to 28 V.

QUICK REFERENCE DATA

Continuous reverse voltage	VR	max.	28	٧
Reverse current at V _R = 28 V	I _R	max.	10	nΑ
Diode capacitance at f = 500 kHz V _R = 1 V	C _d	39 to 46 pF		
V _R = 28 V	C ^d	4,0	to 5,0	pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = 1 V)}{C_d (V_R = 28 V)}$	8 to 10		
Series resistance at $f = 200 \text{ MHz}$ V _R is that value at which C _d = 25 pF.	r _s	max.	0,6	Ω

MECHANICAL DATA

Dimensions in mm

Fig.1 SOD-80.

Cathode indicated by black band.

RATINGS

Series resistance at f = 200 MHz

Relative capacitance difference

 V_R is that value at which C_d = 25 pF

between two diodes; $V_R = 0.5$ to 28 V

Limiting values in accordance with the Absolute Maximum S	System (IEC 134)			
Continuous reverse voltage	V_{R}	max.	28	V
Reverse voltage (peak va ue)	V_{RM}	max.	30	V
Forward current (d.c.)	1 _F	max.	20	mΑ
Storage temperature	T_{stg}	-55 to +	150	oC
Operating junction temperature	Тј	max.	100	oC
THERMAL RESISTANCE				
From junction to ambient in free air	R _{th j-a}	=	0,6	K/mW
CHARACTERISTICS				
T _{amb} = 25 °C unless otherwise specified				
Reverse current				
V _R = 28 V	1 _R	max.	10	nA
$V_{R} = 28 \text{ V; } T_{amb} = 85 ^{\circ}\text{C}$	I _R	max.	200	nΑ
Diode capacitance at f = 500 kHz				
V _R = 1 V	c_d	39 to 46		pF
V _R = 28 V	c_d	4,0 to 5,0 pF		pF
Capacitance ratio at f = 500 kHz	$\frac{C_d (V_R = 1 V)}{C_d (V_R = 28 V)}$	8 t	o 10	

rs

 Ω 0,0

3 %

max.

max.

 10^{-2} $\frac{\eta}{\left(\frac{pF/pF}{K}\right)}$ 10^{-3} typ 10^{-4} 10^{-5} 10² 10 V_R (V) Fig. 3 Temperature coefficient of the diode

capacitance; $T_{amb} = 0$ to 85 °C.

