OKI semiconductor

40-BIT GRID DRIVER

GENERAL DESCRIPTION

The MSC7701 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip.
The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors.
Since the pin assigment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.
The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis.

FEATURES

- Logic supply voltage
$\left(V_{C C}\right):+5 V$
- VF driver supply voltage
$\left(V_{h v}\right):+130 V$:
- VF driver output current

$$
\begin{aligned}
& \left(l_{\text {ohvh }}\right):-40 \mathrm{~mA} \text { (1 driver output high) } \\
& \left(\text { lohvil }^{\prime}\right):+2 \mathrm{~mA}
\end{aligned}
$$

- Clock frequency : 5.5 MHz
- Built-in 40-Bit latch
- Built-in 40-Bit bidirectional shift register
- 60 Pin FLAT Package

BLOCK DIAGRAM

PIN CONFDIGURATION

74

PIN DESCRIPTION

| Pin No. | Symbol | Name | Description |
| :---: | :---: | :--- | :--- | TERMINAL CIRCUITS

76

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

RESET	CLK	F/B	S1/s0	Q 1	Q 2	Q 3	\cdots	Q 39	Q 40	SO/S1
L	X	L	X	L	L	L		L	L	L
L	X	H	L	L	L	L		L	L	X
H	L	L	H	H	$\mathrm{Q}_{1 n}$	$\mathrm{Q}_{2 n}$		$\mathrm{Q}_{38 n}$	$\mathrm{Q}_{39 n}$	$\mathrm{Q}_{39 n}$
H	L	L	L	L	$\mathrm{Q}_{1 n}$	$\mathrm{Q}_{2 n}$		$\mathrm{Q}_{38 n}$	$\mathrm{Q}_{39 n}$	$\mathrm{Q}_{39 n}$
H	L	H	$\mathrm{Q}_{2 n}$	$\mathrm{Q}_{2 n}$	$\mathrm{Q}_{3 n}$	$\mathrm{Q}_{4 n}$		$\mathrm{Q}_{40 n}$	H	H
H	L	H	$\mathrm{Q}_{2 n}$	$\mathrm{Q}_{2 n}$	$\mathrm{Q}_{3 n}$	$\mathrm{Q}_{4 n}$		$\mathrm{Q}_{40 n}$	L	L

$\overline{C L}$	LS	Qn	HVOn
L	X	X	L
H	H	H	H
H	H	L	L
H	L	X	$N C$

L: Low Level, H : High Level X: Don't Care, NC: No Change

ELECTRICAL CHARACTERISTICS

- Absolute Maximum Ratings

Parameter	Symbol	Conditios	Limits	Unit	Note
Logic supply voltage	V_{CC}	Applicable to logic power terminal	$-0.3 \sim 6.5$	V	1
Driver supply voltage	V_{HV}	Applicable to driver power terminal	$\mathrm{V}_{\mathrm{CC}} \sim 150$	V	1
Input voltage	V_{IN}	Applicable to all input teminals	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V	1
Data ouptput voltage	Vod	Applicable to data output terminal	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V	1
Driver output voltage	VohV	Applicable to all driver terminals	$-0.3 \sim \mathrm{~V}_{\mathrm{CC}}+0.3$	V	1
Power Dissipation	Pd	$\mathrm{Ta} \leqq 25^{\circ} \mathrm{C}$	860	mW	
Attenuatlon Rate	$\mathrm{Rj}-\mathrm{a}$	$\mathrm{Ta}>25^{\circ} \mathrm{C}$	145	${ }^{\circ} \mathrm{CW}$	2
Operating temperature	Top	$\mathrm{VHV} \leqq 130 \mathrm{~V}$	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$	

Notes: 1. The maximum voltage which can be applied to the GND terminal.
2. Thermal resistance of the package (between junction and atmosphere).
The junction temperature (Tj) expressed by the equation indicated below should not exceed $150^{\circ} \mathrm{C}$.
$\mathrm{Tj}=\mathrm{P} \times \mathrm{Rj}-\mathrm{a}+\mathrm{Ta}(\mathrm{P}: \quad$ Maximum power consumption of IC$)$

- Recommended Operating Conditions

Parameter	Symbol	Conditions		MIN	MAX	Unit
Logic supply voltage	V_{Cc}	Applicable to logic power terminal		4.5	5.5	V
Driver supply voltage	V_{HV}	Applicable to logic power terminal		10	130	V
High levei input voltage	$\mathrm{V}_{\mathbf{I H}}$	Applicable to all input terminals	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	3.6	-	V
			$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	4.4	-	
Low level input voltage	$\mathrm{V}_{\text {IL }}$	Applicable to all input terminals	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	-	0.9	v
			$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	1.1	
Driver high level output current	Іонve	1 driver output : High Other driver outputs : Low		-	-40	mA
Driver low level output current	lohvl	Applicable to all driver output terminals		-	2	mA
Clock frequency	$f \varnothing$	See timing chart.		-	5.5	MHz
Clock pulse width	$\mathrm{t}_{\text {wcikl }}$	See timing chart.		70	-	ns
Data setup time	$\mathrm{t}_{\text {ds }}$	See timing chart.		20	-	ns
Data hold time	t_{dh}	See timing chart.		45	-	ns
LS pulse width	$\mathrm{t}_{\text {wls }}$	See timing chart.		80	-	nS
CLK-LS delay time	$\mathrm{t}_{\text {dcl }}$	See timing chart.		45	-	nS
LS-CL delay time	$\mathrm{t}_{\text {dicl }}$	See timing chart.		0	-	ns
CLpulse width	$\mathrm{t}_{\text {wcl }}$	See timing chart.		2	-	$\mu \mathrm{S}$
Operating temperature	Top	See timing chart.		-40	+85	${ }^{\circ} \mathrm{C}$

- DC Characteristics
$V_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{HV}}=110 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \sim+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions		MIN	TYP	MAX	Unit
Logic supply current	$\mathrm{I}_{\mathrm{Cl} 1}$	Noload$v_{c c}=5.5 \mathrm{~V}$	All inputs : Low	-	-	50	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {CC2 }}$		All inputs : High 1 driver output $:$ High Other driver outputs:	-	-	200	
Driver supply current	$\mathrm{I}_{\mathrm{HV} 1}$	Noload$v_{c c}=5.5 \mathrm{~V}$	All driver outputs : Low	-	-	50	$\mu \mathrm{A}$
	Inv2		1 driver output : High	-	1.1	1.5	mA
High level input voltage	V_{IH}	$\mathrm{v}_{\mathrm{cc}}=4.5 \mathrm{~V}$	Applicable to all input terminals	3.15	-	-	V
		$v_{\text {cc }}=5.5 \mathrm{~V}$		3.85	-	-	V
Low level input voltage	VIL	$\mathrm{v}_{\mathrm{cc}}=4.5 \mathrm{~V}$	Applicable to all input terminals	-	-	1.35	V
		$\mathrm{v}_{\mathrm{cc}}=5.5 \mathrm{~V}$		-	-	1.65	\checkmark
Input leak current	Ifleek	$\mathrm{Ta}^{2}=25^{\circ} \mathrm{C}$	Input terminals except $\overline{\mathrm{L}}$ terminal	-	-	± 1	$\mu \mathrm{A}$
High level input current	I_{H}	$v_{\text {cc }}=4.5 \mathrm{~V}$	Applicable to $\overline{\mathrm{CL}}$ terminal	20	50	100	$\mu \mathrm{A}$
		$\mathrm{v}_{\mathrm{cc}}=5.5 \mathrm{~V}$		25	60	200	
Input capacitance	$\mathrm{CIN}_{\text {IN }}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		-	15	-	pF
High level data output voltage	V VOH	$10=-0.1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}$	3.5	-	-	v
			$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$	4.5	-	-	
Low level data output voltage	VodL	$10=-0.1 \mathrm{~mA}$	$\mathrm{V}_{\text {cc }}=4.5 \mathrm{~V}$	-	-	0.9	V
			$v_{\text {cc }}=5.5 \mathrm{~V}$	-.	-	1.1	
High level driver output voltae	$\mathrm{V}_{\text {OHV }}$	$\mathrm{I}_{\mathrm{HVV}}=-40 \mathrm{~mA}$		106	-	-	V
Low level driver output voltae	$\mathrm{V}_{\text {OhVL }}$	$\mathrm{I}_{\text {OHv }}=2 \mathrm{~mA}$		-	-	4	v

- AC Characteristics

Parameter	Symbol	Conditios	MIN	TYP	MAX	Unit	Note
CLK-DOUT delay time	t_{pd}	See timing chart and test chart.	-	100	150	ns	4
Delay time: $\quad \mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{t}_{\mathrm{dlh}}$	See timing chart and test chart.	-	0.3	1	μs	5,6
Transit time: $\mathrm{L} \rightarrow \mathrm{H}$	$\mathrm{t}_{\text {th }}$	See timing chart and test chart.	-	2	5	μ	5
Delay time: $\mathrm{H} \rightarrow \mathrm{L}$	$\mathrm{t}_{\text {dhl }}$	See timing chart and test chart.	-	0.3	1	$\mu \mathrm{s}$	5,6
Transit time: $H \rightarrow L$	$\mathrm{t}_{\text {thl }}$	See Timing chart and test chart.	-	3	6	$\mu \mathrm{s}$	5

Note 4: Applicable to data output terminal.
Note 5: Applicable to driver output terminal.
Note 6 : $\quad \mathrm{t}_{\mathrm{d} h \mathrm{~h}}$ and T_{dh} are delay times from CL signal.

- Timing Chart

81

Information furnished by OKIIs belleved to be accurate and reliable.
However, no respons/billty is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

