T.52-13-90

OKI semiconductor

(Underdevelopment)

40-BIT GRID DRIVER

MSC7701

GENERAL DESCRIPTION

The MSC7701 is a monolithic IC using the high withstand voltage driver process for hybridizing CMOS and DMOS transistors on one chip.

The logic portion such as the input stage, shift register and latch is formed by CMOS, and the output driver requiring a high withstand voltage is formed by DMOS transistors.

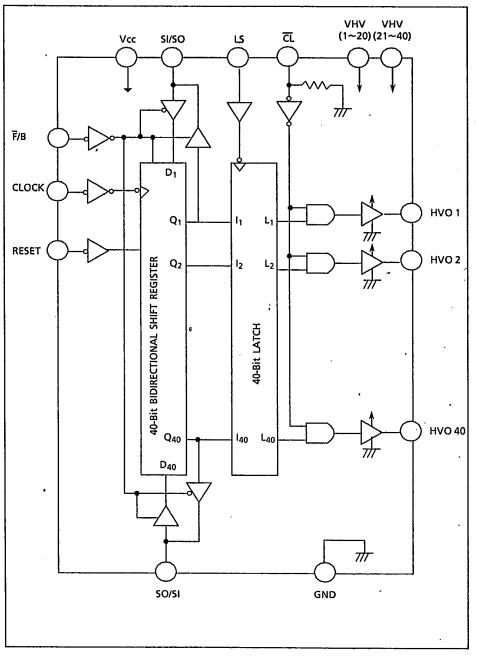
Since the pin assignment allows single side pattern formation on the printed circuit board, the display unit size can be reduced.

The bidirectional shift register facilitates the pattern design when the devices are arranged symmetrically with the display at the center axis.

FEATURES

- Logic supply voltage (V_{CC}) : + 5 V
- VF driver supply voltage (V_{hv}) : + 130 V ;
- VF driver output current

(lohvh) : - 40 mA (1 driver output high)


(l_{ohyl}) : +2 mA

- Clock frequency : 5.5 MHz
- Built-in 40-Bit latch
- Built-in 40-Bit bidirectional shift register
- 60 Pin FLAT Package

72

T-52-13-90

BLOCK DIAGRAM

73

This Material Copyrighted By Its Respective Manufacturer

Downloaded from Datasheet.su

T-52-13-90

•

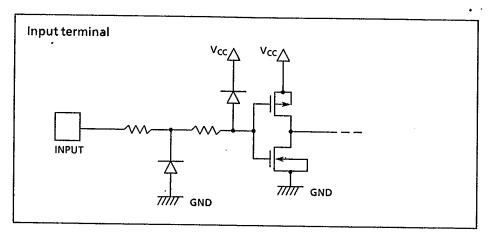
PIN CONFDIGURATION

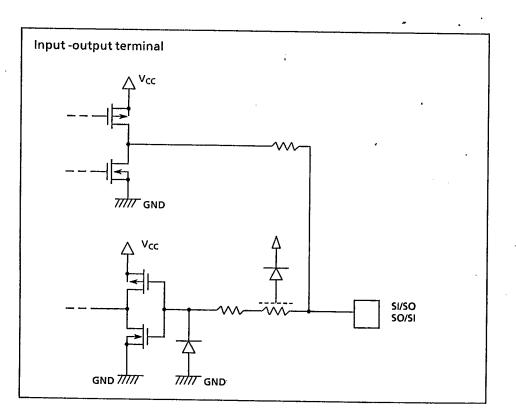
74

🗰 6724240 0006423 o 🔳

PIN DESCRIPTION

T-52-13-90

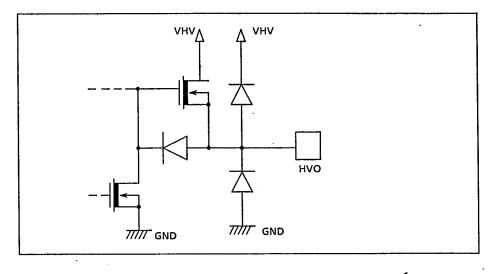

Pin No.	Symbol	Name	Description
1 20 41 50	HVO 1 HVO 40	Driver output	 Each terminal is a high withstand voltage driver output terminal to drive the grid of the VF display tube, which corresponds to each bit of the shift register. Each terminal can be directly connected to the grid terminal of the VF display tube.
22 39	V _{HV}	Driver supply voltage	1. This is a power terminal of the high withstand voltage driver to drive the VF display tuve.
28	Vcc	Logic supply voltage	2. This is a power terminal of the logic portion.
36	ĊĹ	Clear input	 This is an input terminal containing a pull-down resistor. The terminal is generally kept High. The driver output, High or Low, is driven by the output of the corresponding latch circuit. When the terminal is Low, the driver outputs are fixed to "Low" regardless of the output of the latch circuit.
26	LS	Latch strobe input	 When the terminal is High, the latch circuit is slewed, and the output of the shift register is read into the latch circuit. When the terminal is Low, the latch circuit holds the output of the shift register immediately before the terminal is turned Low.
34	CLOCK	Clock input	 This is a clock terminal of the shift register. The data of the shift register is shifted at the falling edge of a clock pulse.
32	RESET	Reset input	 When the terminal is Low; all the data of the shift register is Low. Generally and when not in use, connect the terminal to the V_{CC} terminal.
38	F/B	Shift direction control input	 When the terminal is Low, data is shifted from to 40, and Pin 31 is a serial in terminal and Pin 30 is a serial out terminal. When the terminal is High, data is shifted from 40 to 1, and Pin 30 is a serial in terminal and Pin 31 is a serial out terminal.
31	SI/SO	Serial input/serial output	 When the F/B terminal is Low, this terminal is serial data input terminal. When the F/B terminal is High, this terminal is serial data output terminal.
30	SO/SI	Serial output/serial input	 When the F/B terminal is Low, this terminal is serial data output terminal. When the F/B terminal is High, this terminal is serial data input terminal.
24	GND	GND	1. This is a grounding (GND) terminal.


75

This Material Copyrighted By Its Respective Manufacturer

Downloaded from Datasheet.su

T-52-13-90 SCHEMATIC DIAGRAMS OF LOGIC PORTION INPUT AND OUTPUT TERMINAL CIRCUITS


76

O K I SEMICONDUCTOR GROUP 23E D ■ 6724240 0006425 4 **mm**

T-52-13-90

. .

SCHEMATIC DIAGRAM OF DRIVER OUTPUT TERMINAL CIRCUIT

FUNCTION TABLE

ł

RESET	CLK	Ŧ/в	SI/SO	Q1	Q2	Q3	 Q39	Q40	SO/SI
L	Х	L	х	L	L	L	L	Ľ	L
L	х	н	L	L	L	L	L	L	x
Η.	_ ₹	L	н	н	Q _{1n}	Q _{2n}	Q _{38n}	Q _{39n}	Q _{39rr}
Н	لم م	L	۰L	L	Q _{1n}	Q _{2n}	Q _{38n}	Q _{39n}	Q _{39n}
н	~~	Н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}	Q _{40n}	н	н
н	_ √_	н	Q _{2n}	Q _{2n}	Q _{3n}	Q _{4n}	Q _{40n}	L	L

ĊĹ	LS	Qn	HVOn
L	х	х	L
н	н	н	н
н	н	L	L
н	L	x	NC

L: Low Level, H: High Level X: Don't Care, NC: No Change

77

- 6 -

-----.

📰 6724240 0006426 6 📰

T-52-13-90

ELECTRICAL CHARACTERISTICS

•	Absolute	Maximum Ra	tings

Parameter	Symbol	Conditios	Limits	Unit	Note
Logic supply voltage	V _{CC}	Applicable to logic power terminal	- 0.3~6.5	v	1
Driver supply voltage	voltage V _{HV} Applicable to V _{CC} ~150 driver power terminal		v	1	
Input voltage	VIN	Applicable to all input teminals	-0.3~V _{CC} +0.3	V	1
Data ouptput voltage	Vod	Applicable to data output terminal	-0.3~V _{CC} +0.3	v	1
Driver output voltage	Vohv	Applicable to all driver terminals	- 0.3~V _{CC} + 0.3	v	1
Power Dissipation	Pd	Ta≦25°C	860	mW	
Attenuation Rate	Rj-a	Ta>25°C	145	°C/W	2
Operating temperature	Тор	VHV≦ 130V	- 40~ + 85	°C	
Storage temperature	Tstg		- 55~ + 150	°C	

Notes: 1. The maximum voltage which can be applied to the GND terminal.

2. Thermal resistance of the package (between junction and atmosphere).

The junction temperature (Tj) expressed by the equation indicated below should not exceed 150°C.

 $Tj = P \times Rj - a + Ta (P: Maximum power consumption of IC)$

78

. .

🔳 6724240 0006427 8 🔳

T-52-13-90

• • • •

Recommended Operating Conditions

Parameter	Symbol	Conditions		MIN	ΜΑΧ	Unit	
Logic supply voltage	V _{cc}	Applicable to logic power terminal		4.5	5.5	v	
Driver supply voltage	V _{HV}	Applicable to logic terminal	power	10	130	v	
High level input voltage	VIH	Applicable to all	V _{CC} = 4.5V	3.6	-	v	
		V _{CC} = 5.5V	4.4	-	•		
Low level input voltage	VIL	Applicable to all	V _{CC} = 4.5V	-	0.9	v	
Low level input voltage	νïL	input terminals	V _{CC} = 5.5V		1.1	v	
Driver high level output current	I _{ОНVН}	1 driver output : High Other driver outputs : Low		-	- 40	mA	
Driver low level output current	^I OHVL	Applicable to all dri terminals	-	2	mA		
Clock frequency	fØ	See timing chart.		-	5.5	MHz	
Clock pulse width	t _{wciki}	See timing chart.		70	-	nS	
Data setup time	t _{ds}	See timing chart.		20		nS	
Data hold time	t _{dh}	See timing chart.		45	-	nS ·	
LS pulse width	t _{wis}	See timing chart.		80		nS	
CLK-LS delay time	t _{dcl}	See timing chart.		45	—	nS	
LS-CL delay time	t _{dlcl}	See timing chart.		0	<u> </u>	, nS	
CL pulse width	t _{wcl}	See timing chart.		2	-	μS	
Operating temperature	Тор	See timing chart.		- 40	+ 85	°C	

79

This Material Copyrighted By Its Respective Manufacturer

STATE IN TAXABLE

Through a back of the

• DC Characteristics

T-52-13-90

 $V_{CC} = 5V \pm 10\%$, $V_{HV} = 110V$, $Ta = -40^{\circ}C \sim +85^{\circ}C$

Parameter	Symbol		Conditions			MAX	Unit
Logic supply current	Icc1	No load	All inputs : Low			50	
	I _{CC2}	V _{CC} ≈ 5.5V	All inputs : High 1 driver output : High Other driver outputs : Low	_	_	200	μA
Driver supply	lhv1	No load	All driver outputs : Low	-		50	μA
current	I _{HV2}	V _{cc} ≈ 5.5V	1 driver output : High		1.1	1.5	mA
High level input	VIH	V _{cc} = 4.5V	Applicable to all input	3.15	-		v
voltage		V _{cc} = 5.5V	terminals	3.85	_		v
Low level input	Low level input $V_{IL} = \frac{V_{cc} = 4.5V}{V_{IL}}$		Applicable to all input			1.35	v
voltage		V _{cc} = 5.5V	terminals		-	1.65	v
Input leak current	I _{ILEEK}	Ta = 25℃	Input terminals except CL terminal	-	_	± 1	μА
High level input	Чн	V _{cc} = 4.5V	Applicable to CL terminal	20	50	100	μА
current		V _{cc} = 5.5V		25	60	200	
Input capacitance	CIN	Ta = 25°C	1	_	15	_	рF
High level data	VODH	lo = −0.1mA	V _{cc} ≈ 4.5V	3.5	1	—	
output voltage			V _{CC} = 5.5V	4.5	-	·	v
Low level data	VODL	lo = −0.1mA	V _{cc} = 4.5V	-		0.9	
output voltage			V _{CC} = 5.5V	·	—	1.1	v
High level driver output voltae	V _{онvн}	I _{OHV} = - 40mA		106	-	-	v
Low level driver output voltae	V _{OHVL}	I _{OHV} = 2mA		_	_	4	v

80

experiment of a new statement of the statement

This Material Copyrighted By Its Respective Manufacturer

T-52-13-90

AC Characteristics

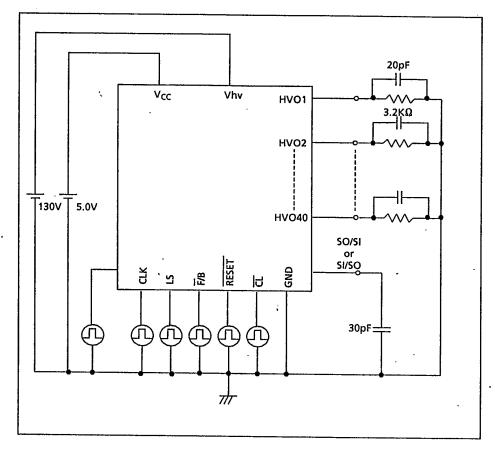
$V_{CC} = 5V_{c}$	$V_{HV} = 200V_{c}$	Ta = 25°C

Parameter	Symbol	Conditios	MIN	ТҮР	MAX	Unit	Note
CLK-DOUT delay time t _{pd}		See timing chart and test chart.	-	100	150	nS	4
Delay time : L→H	t _{dlh}	See timing chart and test chart.	-	0.3	1	μs	5,6
Transit time : L→H	t _{tih}	See timing chart and test chart.	—	2	5	μs	5
Delay time : H→L	t _{dhi}	See timing chart and test chart.	-	0.3	1	μs	5,6
Transit time : H→L	t _{thi}	See Timing chart and test chart.	-	3	6	μs	5

Note 4 : Note 5 : Note 6 :

Applicable to data output terminal. Applicable to driver output termin<u>al.</u> t_{dlh} and T_{dhl} are delay times from CL signal.

Timing Chart



This Material Copyrighted By Its Respective Manufacturer

:

TEST CIRCUIT

T-52-13-90

Information furnished by OKI is believed to be accurate and reliable. However, no responsibility is assumed by OKI for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent rights of OKI.

82

2