Lithium-Ion Battery Charge Control for AC Charger Monolithic IC MM1707 Series

Outline

This IC is a one-cell lithium ion battery charge control IC for AC chargers.

The charging current and charging voltage can be optimally controlled by controlling the primary side through a photocoupler.

It incorporates a charging over timer, delay circuit for misoperation prevention, and overvoltage/overcurrent detection functions.

It includes a 2-channel LED display circuit, which allows displaying the charge status.

Features

- 1. Various charge control functions
- 2. Battery temperature detection function
- 3. Recharge detection function Accuracy ±50mV
- 4. Full-charge detection function Accuracy ±3.4mV
- 5. Voltage control function for the primary side of an AC adaptor
- 6. Abnormal battery detection function

(Overdischarge/overcharge voltage detection functions, battery temperature detection function)

- 7. Abnormal charge prevention function with a built-in timer
- 8. 2-channel LED display function
- 9. Misoperation prevention function with a built-in delay circuit

Package

TSOP-16A, TSOP-16B

Applications

- 1. Cell phones
- 2. Portable music players
- 3. Digital still cameras
- 4. Portable game devices
- 5. PDA

Block Diagram

MM1707BV

MM1707CV

Pin Assignment

16 15 14 13 12 11 10 9]				
TSOP-16A TSOP-16B (TOP VIEW)					

1	TP1	9	CNT2
2	TP2	10	BAT
3	CFB1	11	CNT1
4	CFB2	12	Vcc
5	VREF	13	LED-R
6	TDET	14	LED-G
7	GND	15	OSC-R
8	CS	16	OSC-C

Pin Description

Pin no.	Pin name	I/O	Function
1	TP1	OUTPUT	TEST output pin. Pre-charge timer test pin.
			Inverts while couting and output to TP1, to permit monitoring. Also, TP1 output signal is invered again inside the IC and inputs to the next stage FF.
2	TP2	OUTPUT	TEST output pin. Full-charge timer test pin. Same structure as TP1.
			Rated BAT voltage control phase compensation pin.
3	CFB1	INPUT	Oscillation is improved by connecting an external capacitor between CFB1 and CNT2 for phase compensation
			Rated Vcc voltage control phase compensation pin.
4	CFB2	INPUT	Oscillation is improved by connecting an external capacitor between CFB2 and CNT2 for phase compensation.
			Reference power supply output pin.
5	VREF	OUTPUT	Outputs about 1.2Volts typ. reference voltage. Used for temperature detection reference power supply .
			Temperature detection input pin.
6	6 TDET INP		Apply potential resistance divided by external resistor and thermistor from
			reference voltage when using. Reset state will exist if TDET pin does not reach the specified potential
7	GND	INPUT	GND pin
			Current detection input pin.
			Detects charging current by external resistor (between CS and GND) voltage
8	CS	INPUT	drop and cintrols charging current.
			The full charge current is set using following formula;
			Ichg=VL1(V)/R1(Ω)
_	a 1 m 2		Photo diode drive pin of photo coupler for Vcc and BAT constant voltage and
9	CN12	OUTPUT	constant current control.
			Connect to cathode of diode.
10	BAT	INPUT	Detect battery voltage and entrol charging
			Charging control output pin.
11	CNT1	OUTPUT	Controls external PNP-Tr.
12	Vcc	INPUT	Power supply input pin.
13	LED-R	OUTPUT	LED-R output pin.
			NPN-Tr open collector output.
14	LED-G	OUTPUT	NPN-Tr open collector output
			Oscillator output pin
15	OSC-R	INPUT	Timer setting time changes according to oscillation cycle.
	-		Oscillation cycle is determined by an external resistor and capacitor.
16	OSC-C	OUTPUT	Oscillator inverted input pin.

Pin no.	Pin name	Equivalent circuit diagram	Pin no.	Pin name	Equivalent circuit diagram
1	TP1 TP2	1.2V	6	TDET	VCC VREF VREF CS KI # KI # KI # KI # KI # KI # KI # KI #
			8	CS	Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc Vcc
3	CFB1	BAT Vcc #// CFB1 VREF	9	CNT2	GND m CNT2 CNT2
			10	DAT	
4	CFB2	CFB2 CFB2 CFB2 CFB2 CFB2 CFB2 CFB2 CFB2		DAT	BAT Vcc TH CS TH TH CS TH TH TH TH TH TH TH TH TH TH
5	VREF	Vcc Vref VREF CS m///	11	CNT1	

Pin Description2

Pin no.	Pin name	Equivalent circuit diagram	Pin no.	Pin name	Equivalent circuit diagram
13	LED-R	Vcc T/TLED-R GND T/T	15	OSC-R	
14	LED-G	Vcc	16	OSC-C	UREF OSC-C WREF M M GND M M

Absolute Maximum Ratings (Ta=25°C)

Item	Symbol	Ratings	Units
Storage temperature	Tstg	-55~+150	°C
Operating temperature	Topr	-40~+85	°C
Supply voltage	VDD max.	-0.3~+12	V
Allowable loss	Pd	300	mW

Recommended Operating Conditions

Item	Symbol	Ratings	Units
Operating temperature	Topr	-40~+85	°C
Supply voltage	Vopr	2.7~5.9	V

Electrical Characteristics (Except where noted otherwise Ta=25°C, Vcc=5V)

MM1707BV

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current	Idd	Vcc=5V		6	8.4	mA
Reference voltage	VREF	Vcc=5V		1.238		V
Vcc detection voltage L	VVCCL	Vcc=H→L	2.35	2.45	2.55	V
Vcc detection voltage L	Vuccuw		50	100	150	mV
hysteresis voltage width	VUCLW		50	100	130	111 V
Vcc detection voltage H	VVCCH	Vcc=L→H	6.1	6.3	6.5	V
Vcc detection voltage H	Vycchw		50	100	150	mV
hysteresis voltage width	V VCCHW		00	100	100	111 V
Vcc control voltage	Vvcc		4.1	4.2	4.3	V
BAT pin leakage current	Ibat	Vcc=5V, BAT=3.5V			1	μA
BAT pin output voltage	VBAT	Vcc=5V, Ta=0~+50°C	4.170	4.200	4.230	V
Current limit 1	V ₁ 1	Full charge	148	154	160	mV
	VL1	BAT=3.5V	140	104		
Current limit 2	V_12	Pre-charge	10.0	15.0	20.0	mV
	V L2	BAT=2.5V	10.0			
Full charge detection voltage	VF		15.0	20.0	25.0	mV
Overcurrent detection voltage	Voc		170	200	220	mV
Low voltage detection voltage	VLV	VBAT=L→H	1.90	2.00	2.10	V
Low voltage detection voltage	VLVW		25	50	100	mV
hysteresis voltage width				00	100	
Pre-charge detection voltage	V_P	VBAT=L→H	2.80	2.90	3.00	V
Pre-charge detection voltage	Vpw		25	50	100	mV
hysteresis voltage width						
Overvoltage detection voltage	Vov	VBAT=L→H	4.30	4.35	4.40	V
Battery temperature	V_{TH}	Low temperature –3°C±3°C	0.919	0.950	0.981	v
detection voltage H		detection (rising threshold)				
Battery temperature	V _{TL1}	High temperature 53°C±3°C	0.310	0.335	0.360	V
detection voltage L1		detection (falling threshold)				
Battery temperature detection	VTL2	High temperature 43°C±3°C	0.394	0.423	0.452	V
voltageL2 (abnomal reset)		detection (rising threshold)				
TDET pin input current	ITDET			30	150	nA
LED R pin output voltage	VLED R	ILED R=10mA			0.4	V
LED G pin output voltage	VLED G	ILED R=10mA			0.4	V
CN11 pin output voltage	VCNT1	ICNT1=10mA			0.4	V
CNT2 pin output voltage	VCNT2	ICNT2=5mA			0.4	V
Oscillation cycle	Tosc	Not including external deviation	16.47	18.3	20.13	ms
	1000	R=130kΩ, C=0.µF				

*Current limits 1, 2 and full charge detection are specified at current detection resistor voltage drop.

*If the IC is damaged and control is no longer possible, its safety can not be guaranteed.

Please protect with something other than this IC.

*Temperature detection is the setting value at B constant 3435(10KC15-1608 made by Ishizuka Denshi).

*Use a capacitor with good temperature characteristics in the oscillator. Capacitor deviation will contribute to timer error.

*The standard value of Timer error time is Pre- charge, Full charge.

MM1707CV

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Units
Consumption current	Idd	Vcc=5V		6	8.4	mA
Reference voltage	VREF	Vcc=5V		1.238		V
Vcc detection voltage L	VVCCL	Vcc=H→L	2.35	2.45	2.55	V
Vcc detection voltage L	Vucciw		50	100	150	mV
hysteresis voltage width	VVCCLW		50	100	130	111 V
Vcc detection voltage H	VVCCH	Vcc=L→H	6.1	6.3	6.5	V
Vcc detection voltage H	Vycouw		50	100	150	mV
hysteresis voltage width	V VCCHW		50	100	100	111 V
Vcc control voltage	Vvcc		4.1	4.2	4.3	V
BAT pin leakage current	Ibat	Vcc=5V, BAT=3.5V			1	μA
BAT pin output voltage	VBAT	Vcc=5V, Ta=0~+50°C	4.170	4.200	4.230	V
Current limit 1	VL1	Full charge BAT=3.5V	148	154	160	mV
Current limit 2	VL2	Pre-charge BAT=2.5V	24.0	30.0	36.0	mV
Full charge detection voltage	$V_{\rm F}$		16.8	21.0	25.2	mV
Overcurrent detection voltage	Voc		170	200	220	mV
Low voltage detection voltage	VLV	VBAT=L→H	1.90	2.00	2.10	V
Low voltage detection voltage	Vinn		95	50	100	mV
hysteresis voltage width	VLVW		23	50	100	111 V
Pre-charge detection voltage	V_P	VBAT=L→H	2.80	2.90	3.00	V
Pre-charge detection voltage	Vpw		25	50	100	mV
hysteresis voltage width	VIW		20		100	111 V
Re-charge detection voltage	VR	VBAT=H→ L	3.85	3.90	3.95	V
Overvoltage detection voltage	Vov	VBAT=L→H	4.30	4.35	4.40	V
Battery temperature	V_{TH}	Low temperature –3°C±3°C	0.919	0 950	0 981	v
detection voltage H	VIII	detection (rising threshold)	0.010	0.000	0.001	
Battery temperature	VTL1	High temperature 53°C±3°C	0.310	0.335	0.360	v
detection voltage L1		detection (falling threshold)				
Battery temperature detection	V _{TL2}	High temperature 43°C±3°C	0.394	0.423	0.452	v
voltage L2 (abnomal reset)		detection (rising threshold)				
TDET pin input current	ITDET			30	150	nA
LED R pin output voltage	VLED R	ILED R=10mA			0.4	V
LED G pin output voltage	VLED G	ILED R=10mA	_		0.4	V
CNT1 pin output voltage	V CNT1	ICNT1=10mA			0.4	V
GN12 pin output voltage	V CNT2	ICNT2=5mA			0.4	V
Oscillation cycle	Tosc	Not including external deviation $R=130k\Omega$, $C=0.1\mu F$	16.47	18.3	20.13	ms

*Current limits 1, 2 and full charge detection are specified at current detection resistor voltage drop.

*If the IC is damaged and control is no longer possible, its safety can not be guaranteed.

Please protect with something other than this IC.

*Temperature detection is the setting value at B constant 3435(10KC15-1608 made by Ishizuka Denshi).

- *Use a capacitor with good temperature characteristics in the oscillator. Capacitor deviation will contribute to timer error.
- *When the battery overdischarge condition, it 3mA charge for 36 seconds, and then it does not switch to precharging during that interval, it means the IC has identified a battery abnormality.
- *The standard value of Timer error time is Pre- charge, Full charge, 3mA charge, and Blinking cycle.

Electrical Characteristics2 (OSC Capacitor setting Note)

Oscillation cycle

	ycie					Unit: s
R C	75k Ω	100k Ω	120k Ω	130k Ω	150k Ω	200k Ω
0.047µF	4.9m	6.5m	7.8m	8.5m	9.8m	13.0m
0.082µF	8.7m	11.6m	13.9m	15.1m	17.4m	22.9m
0.1µF	10.7m	14.2m	16.9m	18.3m	21.1m	28.2m
0.15µF	16.0m	21.2m	25.4m	27.7m	31.8m	42.1m
0.22µF	23.2m	31.1m	37.5m	40.8m	46.5m	61.8m

Timer of each times

· MM1707BV

literat	Calculation	Examples of calculation
item	formula	(for C=0.01μF, R=130kΩ; T=18.3ms)
Pre-charge timer (V/BAT>2 0\/)	$T \times 2^{16}$	1199s
rie-charge timer (VDA1/2.00)	172	(19min 59s)
Full observe timor	$T \times 2^{20}$	19189s
Fuil charge timer	1 ~ 2	(5h 19min 49s)
3mA charge timer	$T \times 2^{11}$	37.5s
Full charge detection delay time	$T \times 2^3$	0.146s
Overcurrent detection delay time	$T \times 2^5$	0.586s
Overvoltage detection delay time	$T \times 2^5$	0.586s
Battery temperature detection delay time	$T \times 2^1$	0.037s

T; OSC oscillation cycle

· MM1707CV

literes	Calculation	Examples of calculation
Item	formula	(for C=0.01μF, R=130kΩ; T=18.3ms)
Pro_{10} observes times ()/PAT> 2.0)()	$T \times 2^{16}$	1199s
Fie-charge timer (VDA1>2.0V)	1 ~ 2	(19min 59s)
Full oborgo timor	$\mathbf{T} \mathbf{v} 9^{20}$	19189s
r un charge timer	1~2	(5h 19min 49s)
3mA charge timer	$T \times 2^{11}$	37.5s
Full charge detection delay time	$T \times 2^3$	0.146s
Overcurrent detection delay time	$T \times 2^5$	0.586s
Overvoltage detection delay time	$T \times 2^5$	0.586s
Re-charge detection delay time	$T \times 2^2$	0.073s
Battery temperature detection delay time	$T \times 2^1$	0.037s
LED-R blinking cycle	$T \times 2^7$	2.342s

T; OSC oscillation cycle

Measuring Circuit

Measuring Procedures (Except where noted otherwise Ta=25°C, SW1: A, SW31: ON, SW41: A, SW51: ON, SW6: ON, SW7: A)

MM1707BV

Item	Measuring procedures
Consumption current	The A1 current value when SW1: B, SW2: C, SW3: OFF, SW4: B, SW5: OFF,
	SW6: OFF, BAT=3.5V and bias1=1.25V is Icc.
Reference voltage	The T1 voltage when SW1: C, SW2: C, SW3: OFF, SW4: B, SW5: OFF, SW6:
	OFF and BAT=3.5V is VREF.
Vcc detection voltage L	BAT=1.85V. Gradually decrease Vcc from 2.6V. The Vcc voltage when T2
	oscillation stops is VCCL.
Vcc detection voltage L	BAT=1.85V. Gradually raise Vcc from 2.3V. The Vcc voltage when T2 starts to
hysteresis voltage width	oscillate is VCCL2 and the difference between VCCL and VCCL2 is VCCLW.
Vcc detection voltage H	BAT=2.2V. Gradually raise Vcc from 6.05V. The Vcc voltage when T2 oscillation
	stops is Vcch.
Vcc detection voltage H	BAT=2.2V. Gradually raise Vcc from 6.55V. The Vcc voltage when T2 starts to
hysteresis voltage width	oscillate is VCCH2 and the difference between VCCH and VCCH2 is VCCHW.
	BAT=2.2V. Gradually raise Vcc from 4V. Vcc when T3 switches from 5V to 0V is
Vcc control voltage	
BAT pin leakage current	The A2 current value when Vcc=5V and BAT=3 5V is IBAT
	V _{cc} =5.0V bias ² =0.05V and SW ² : B. Gradually decrease BAT from 4.05V. The
BAT pin output voltage	BAT voltage when T3 switches from 5V to 0V is V_{BAT1} and $V_{BAT=}V_{BAT1} = 0.05$
	Vcc=5V BAT=3 5V and SW2: B. Gradually raise bias2 from 0.14V. The bias2
Current limit 1 (Full charge)	voltage when T3 switches from 5V to $0V$ is V_{11}
	Votage when 15 switches from 57 to 07 is very
Current limit 2 (Pre-charge)	voltage when T3 switches from 0V to 5V is V_{12}
	Votage when 15 switches from 0.0 to 57 is 712.
Full charge detection voltage	bigs 2 voltage when T5 switches from 0V to 5V is VE
	Vcc-4 5V BAT-3 5V and SW2: B Gradually raise Bias2 from 0.16V. The bias2
Overcurrent detection voltage	voltage when T4 switches from 0V to 5V is V_{0C}
Low voltage detection voltage	Votage when 14 switches noni ov to 3 v is vot. Vcc=4.05V and gradually raise BAT from 1.85V. The BAT voltage when T4
	switches from 5V to 0V is Viv
Low voltage detection voltage	V _{cc} =4 05V and gradually decrease BAT from 2.2V. The BAT voltage when T4
hysteresis voltage width	switches from 0V to 5V is V_{1V2} and the difference between V_{1V2} and V_{1V2} is V_{1V2}
hyddrodio Voltago Math	V _{cc=4} 3V hias2=0.027V SW2: B and gradually raise BAT from 2.75V The BAT
Pre-charge detection voltage	voltage when T3 switches from 5V to 0V is V_{P1} and $V_{P2}V_{P1}=0.027$
	Vcc=4 3V bias2=0.027V SW2: B and gradually decrease BAT from 3.2V The
Pre-charge detection voltage	BAT voltage when T3 switches from $0V$ to $5V$ is V_{P2} and the difference between
hysteresis voltage width	V_{P1} and V_{P2} is V_{PW}
	Vcc=4 5V higs2=0.05V and SW2 B. Gradually raise BAT from 4.05V. The BAT
Overvoltage detection voltage	voltage when T6 switches from 0V to 5V is V_{0V1} and $V_{0V2}=V_{0V1}=0.05$
Battery temperature	Vcc=4.05V BAT=2.5V and SW1: B. Gradually raise bias1 from 0.90V. The bias1
detection voltage H	voltage when T6 switches from 0V to 5V is VTH
Battery temperature	Vcc=4 05V BAT=2 5V and SW1: B Gradually decrease hias1 from 0 40V The
detection voltage 1	hias 1 voltage when T6 switches from $0V$ to $5V$ is V_{T11}
Battery temperature	Vcc=4 05V BAT=2 5V and SW1: B. Gradually decrease bias1 from 0.30V. The
detection voltagel 2	hias 1 voltage when T6 switches from 5V to 0 V is V_{T12}
TDET pin input current	Vcc=4.5V. BAT=2.5V. bias1=1.2V. SW1: B and the current value A3 is ITDET
LED R pin output voltage	Vcc=4.5V, BAT=2.5V, SW3: OFF, SW4: C. SW5: OFF, SW6: OFF and the T6
	voltage when 10mA flows on T6 is VLFDR
LED G pin output voltage	Vcc=4.5V. BAT=2.5V. SW3: OFF. SW4: C. SW5: OFF. SW5: OFF and the T5
	voltage when 10mA flows on T5 is VIEDG

Item	Measuring procedures
CNT1 pin output voltage	Vcc=4.5V, BAT=3.5V, SW3: OFF, SW4: C, SW5: OFF, SW5: OFF and the T4
	voltage when 10mA flows on T4 is VCNT1.
CNT2 pin output voltage	Vcc=4.5V, BAT=2.5V, SW3: OFF, SW4: C, SW5: OFF, SW5: OFF and the T3
	voltage when 5mA flows onT3 is VCNT2.
Oscillation cycle	The cycle of T2 signal when Vcc=4.5V and BAT=2.5V is Tosc.

MM1707CV

Item	Measuring procedures
Consumption current	The A1 current value when SW1: B, SW2: C, SW3: OFF, SW4: B, SW5: OFF,
	SW6: OFF, BAT=3.5V and bias1=1.25V is Icc.
Reference voltage	The T1 voltage when SW1: C, SW2: C, SW3: OFF, SW4: B, SW5: OFF, SW6:
	OFF and BAT=3.5V is VREF.
Vcc detection voltage L	BAT=1.85V. Gradually decrease Vcc from 2.6V. The Vcc voltage when T2
	oscillation stops is Vccl.
VCC detection voltage L	BAT=1.85V. Gradually raise Vcc from 2.3V. The Vcc voltage when T2 starts to
hysteresis voltage width	oscillate is VCCL2 and the difference between VCCL and VCCL2 is VCCLW.
Vcc detection voltage H	BAT=2.2V. Gradually raise Vcc from 6.05V. The Vcc voltage when T2 oscillation
	stops is VCCH.
VCC detection voltage H	BAT=2.2V. Gradually raise Vcc from 6.55V. The Vcc voltage when T2 starts to
hysteresis voltage width	oscillate is VCCH2 and the difference between VCCH and VCCH2 is VCCHW.
Vcc control voltage	BAT=2.2V. Gradually raise Vcc from 4V. The Vcc when T3 switches from 5V to
	0V is Vvcc.
BAT pin leakage current	The A2 current value when Vcc=5V and BAT=3.5V is IBAT.
BAT pin output voltage	Vcc=5.0V, bias2=0.05V and SW2: B. Gradually decrease BAT from 4.05V. The
	BAT voltage when T3 switches from 5V to 0V is VBAT1 and VBAT=VBAT1-0.05.
Current limit 1 (Full charge)	Vcc=5V, BAT=3.5V and SW2: B. Gradually raise bias2 from 0.14V. The bias2
	voltage when T3 switches from 5V to 0V is VL1.
Current limit 2 (Pre-charge)	Vcc=5V, BAT=2.5V and SW2: B. Gradually raise bias2 from 0.02V. The bias2
	voltage when T3 switches from 0V to 5V is V12.
Full charge detection voltage	Vcc=4.5V, BAT=4.15V and SW2: B. Gradually decrease Bias2 from 0.03V. The
	bias2 voltage when 16 switches from 0V to 5V is VF.
Overcurrent detection voltage	Vcc=4.5V, BA1=3.5V and SW2: B. Gradually raise Bias2 from $0.16V$. The bias2
	voltage when 14 switches from 0V to 5V is Voc.
Low voltage detection voltage	$V_{cc}=4.05V$ and gradually raise BA1 from 1.85V. The BA1 voltage when 14
	Switches from 5V to UV is VLV.
Low voltage detection voltage	vcc=4.05 v and gradually decrease BA1 from 2.2 v. The BA1 voltage when 14
hysteresis voltage width	Switches from 0. to 5. Is VLv2 and the difference between VLv and VLv2 is VLv4.
Pre-charge detection voltage	voltage when T2 switches from 5V to 0V is Vp; and Vp-Vp; 0.027
	Voltage when 15 switches from 5 v to 0 v is vpr and v= vpr-0.027.
Pre-charge detection voltage	VCC=4.5V, $DIas2=0.027V$, $SW2$. D and gradually decrease DAT from 5.2V. The BAT voltage when T3 switches from 0V to 5V is V_{P2} and the difference between
hysteresis voltage width	V _{p1} and V _{p2} is V _{pw}
Re-charge detection voltage	Vcc=4 35V hias2=0.05V and SW2· B. Gradually decrease BAT from 4.05V. The
	BAT voltage when T6 switches from 5V to 0V is V_{P1} and $V_{P2}=V_{P1}=0.05$
Overvoltage detection voltage	Vcc=4 5V bias2=0.05V and SW2: B Gradually raise BAT from 4.05V. The BAT
	voltage when T6 switches from 0V to 5V is V_{0V1} and $V_{0V2}=V_{0V1}=0.05$
Battery temperature	Vcc=4.05V. BAT=2.5V and SW1: B. Gradually raise bias1 from 0.90V. The bias1
detection voltage H	voltage when T6 switches from 0V to 5V is VTH.
Letter tonage if	

Item	Measuring procedures
Battery temperature	Vcc=4.05V, BAT=2.5V and SW1: B. Gradually decrease bias1 from 0.40V. The
detection voltage L1	bias1 voltage when T6 switches from 0V to 5V is VTL1.
Battery temperature	Vcc=4.05V, BAT=2.5V and SW1: B. Gradually decrease bias1 from 0.30V. The
detection voltage L2	bias1 voltage when T6 switches from 5V to 0V is VT12.
TDET pin input current	Vcc=4.5V, BAT=2.5V, bias1=1.2V, SW1: B and the current value A3 is ITDET.
LED R pin output voltage	Vcc=4.5V, BAT=2.5V, SW3: OFF, SW4: C, SW5: OFF, SW6: OFF and the T6
	voltage when 10mA flows on T6 is VLEDR.
LED G pin output voltage	Vcc=4.5V, BAT=2.5V, SW3: OFF, SW4: C, SW5: OFF, SW5: OFF and the T5
	voltage when 10mA flows on T5 is VLEDG.
CNT1 pin output voltage	Vcc=4.5V, BAT=3.5V, SW3: OFF, SW4: C, SW5: OFF, SW5: OFF and the T4
	voltage when 10mA flows on T4 is VCNT1.
CNT2 pin output voltage	Vcc=4.5V, BAT=2.5V, SW3: OFF, SW4: C, SW5: OFF, SW5: OFF and the T3
	voltage when 5mA flows onT3 is VCNT2.
Oscillation cycle	The cycle of T2 signal when Vcc=4.5V and BAT=2.5V is Tosc.

Timing Chart

MM1707BV

Case of normal charging

Case of connecting abnormal adapter

Case of setting battery error (temparature detection pin ; open)

Case of overcharged battery

Case of overdischarged battery

Case of overcurrent detection

Case of time-up for Pre charging

Case of time-up for full charging

Case of Full charged battery

Case of connecting abnormal adapter

MM1707CV

Case of normal charging

Case of setting battery error (temparature detection pin ; open)

TV Vcc 0V BAT pin voltage 3V Charging current 0A LED-R OFF LED-G OFF

Case of overcharged battery

Downloaded from Datasheet.su

Case of overdischarged battery

Case of overcurrent detection

Case of time-up for Pre charging

Case of time-up for full charging

Case of Full charged battery

Case of Re-charge detection

Flow Chart

MM1707BV

MM1707BV

Application Circuit

These circuits are typical examples provided for reference purposes, so in actual applications, the circuit constants, conditions and operations should be thoroughly studied.

Mitsumi Electric Co., Ltd. assumes no responsibility for any trouble or damage as a result of the use of these circuits.

Mitsumi Electric Co., Ltd. assumes no responsibility for any infringement of industrial property or any other right of a third party or us, as a result of the use of these circuits.