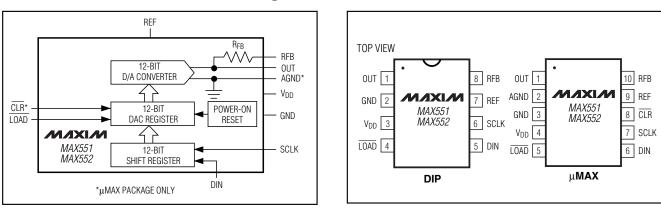
General Description

The MAX551/MAX552 are 12-bit, current-output, 4-quadrant multiplying digital-to-analog converters (DACs). These devices are capable of providing unipolar or bipolar outputs when operating from either a single +5V (MAX551) or +3V (MAX552) power supply. An internal power-on-reset circuit clears all DAC registers on power-up, setting the DAC output voltage to 0V.


The SPI™/QSPI™ and MICROWIRE™-compatible 3wire serial interface saves board space and reduces power dissipation compared with parallel-interface devices. The MAX551/MAX552 feature double-buffered interface logic with a 12-bit input register and a 12-bit DAC register. Data in the DAC register sets the DAC output voltage. Data is loaded into the input register through the serial interface. The LOAD input transfers data from the input register to the DAC register, updating the DAC output voltage.

The MAX551/MAX552 are available in an 8-pin DIP package or a space-saving 10-pin μ MAX package. The μ MAX package provides an asynchronous clear (CLR) input that clears all DAC registers when pulled to GND, setting the output voltage to 0V.

Applications

Functional Diagram

Automatic Calibration Gain Adjustment Transducer Drivers Process-Control I/O Boards Digitally Controlled Filters Motion-Controlled Systems µP-Controlled Systems Programmable Amplifiers/Attenuators

SPI and QSPI are trademarks of Motorola Inc. MICROWIRE is a trademark of National Semiconductor Corp.

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

MAX551/MAX552

- Single-Supply Operation: +4.5V to +5.25V (MAX551) +2.7V to +3.6V (MAX552)
- 12.5MHz 3-Wire Serial Interface
- ♦ SPI/QSPI and MICROWIRE Compatible
- Power-On Reset Clears DAC Output to Zero
- Asynchronous Clear Input Clears DAC Output to Zero
- Voltage Mode or Bipolar Mode Operation with a Single Power Supply
- Schmitt-Trigger Digital Inputs for Direct Optocoupler Interface
- ♦ 0.4µA Supply Current
- 10-Pin µMAX Package

PART	TEMP RANGE	PIN- PACKAGE	LINEARITY (LSB)
MAX551ACPA	0°C to +70°C	8 Plastic DIP	±1/2
MAX551BCPA	0°C to +70°C	8 Plastic DIP	±1
MAX551ACUB	0°C to +70°C	10 µMAX	±1/2
MAX551BCUB	0°C to +70°C	10 µMAX	±1
MAX551AEPA	-40°C to +85°C	8 Plastic DIP	±1/2
MAX551BEPA	-40°C to +85°C	8 Plastic DIP	±1
MAX551AEUB	-40°C to +85°C	10 µMAX	±1/2
MAX551BEUB	-40°C to +85°C	10 µMAX	±1

_Ordering Information

Ordering Information continued at end of data sheet.

Pin Configurations

Downloaded from Datasheet.su

ABSOLUTE MAXIMUM RATINGS

V _{DD} to GND	
Digital Inputs (SCLK, DIN, LOAD, CLR)	
to GND0.3V to 6V	
OUT to GND0.3V to $(V_{DD} + 0.3V)$	
AGND to DGND±0.3V	
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
Plastic DIP (derate 9.09mW/°C above +70°C)727mW	
µMAX (derate 5.60mW/°C above +70°C)444mW	

Operating Temperature Ranges

MAX55C	0°C to +70°C
MAX55E	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX551

(V_{DD} = +4.5V to +5.25V, V_{REF} = 5V, OUT = AGND = GND, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	I						I
Resolution	N			12			Bits
Integral Nonlinearity	INL		MAX551A			±1/2	LSB
integral Norillieanty			MAX551B			±1	LSD
Differential Nonlinearity	DNL	Guaranteed monotonic over	MAX551A			±1/2	LSB
Differential Norminearity	DINE	temperature	MAX551B			±1	LOD
Gain Error		Using internal feedback	MAX551A			±1	LSB
Gain Enor		resistor (R _{FB})	MAX551B			±2	LOD
Gain Tempco (ΔGain/ΔTemp)		Using internal feedback resis (Note 2)	tor (R _{FB})		±0.2	±1	ppm/°C
Power-Supply Rejection	PSR	$\Delta V_{DD} = +5\%, -10\%$				2	ppm/%
DYNAMIC PERFORMANCE (Note 3)		·				
Current Settling Time	ts	$T_A = +25^{\circ}C$, to 1/2LSB, OUT 100 Ω II13pF, DAC register alt with 1s and 0s			0.08	1	μs
Digital-to-Analog Glitch		V _{REF} = 0V, OUT load is 100Ω register alternately loaded wi			0.65	20	nV-s
AC Feedthrough at OUT		V _{REF} = 5V _{P-P} at 10kHz, DAC with all 0s	register loaded		0.3	1	mV _{P-P}
Total Harmonic Distortion	THD	$V_{REF} = 6V_{RMS}$ at 1kHz, DAC register loaded with all 1s			-85		dB
Output Noise-Voltage Density		10Hz to 100kHz, measured b OUT	etween RFB and		13	15	nV/√Hz

ELECTRICAL CHARACTERISTICS—MAX551 (continued)

(V_{DD} = +4.5V to +5.25V, V_{REF} = 5V, OUT = AGND = GND, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

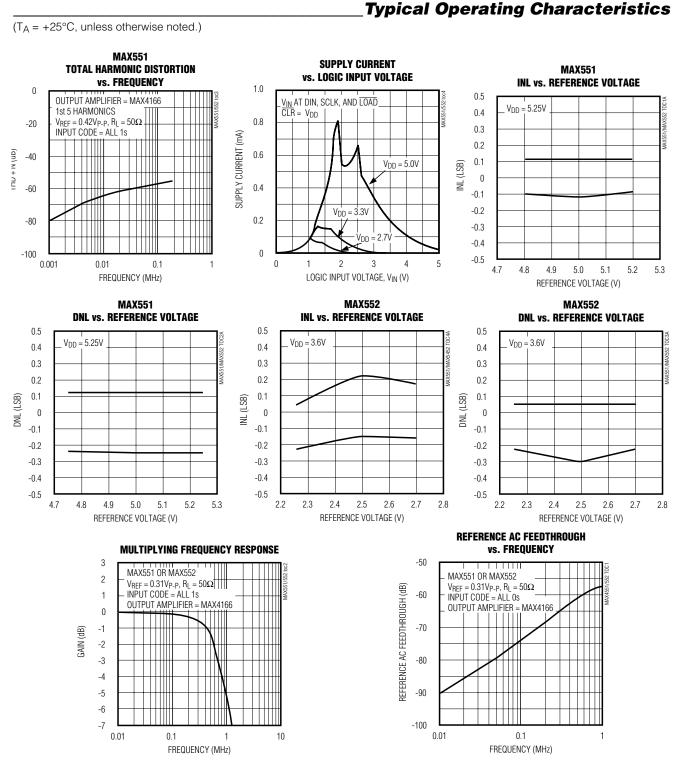
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
REFERENCE INPUT							1
Input Resistance	R _{REF}	Measured between REF	and OUT	7	11	15	kΩ
Input Resistance Tempco					6.5		ppm/°C
Reference -3dB Bandwidth	BW	$V_{OUT} = 0.31 V_{P-P}, R_L = 3$	50Ω , code = full-scale		725		kHz
ANALOG OUTPUT							
OUT Leakage Current		DAC register loaded	$T_A = +25^{\circ}C$		±0.15	±5	nA
OUT Leakage Guiteni		with all 0s	$T_A = T_{MIN}$ to T_{MAX}			±25	
	Court	Code = zero scale (Note	e 2)		14	20	~F
OUT Capacitance	Cout	Code = full scale (Note	2)		20	30	рF
DIGITAL INPUTS			·				
Input High Voltage	VIH			2.4			V
Input Low Voltage	VIL					0.8	V
Input Hysteresis	HYST	LOAD, CLR, DIN, and S	CLK, V _{DD} = 5V		156		mV
Input Leakage Current			$V_{\overline{CLR}} = V_{DD}$			±1	μΑ
	lin	CLR	$V\overline{CLR} = 0V$		18	100	
		SCLK, LOAD, DIN	Inputs at 0V or V_{DD}			±1	
Input Capacitance	CIN	Inputs at 0V or V _{DD} (Note 2)				8	pF
SWITCHING CHARACTERIST	rics		l				1
SCLK Pulse Width High	tсн			25			ns
SCLK Pulse Width Low	tCL			25			ns
DIN Data to SCLK Setup	tDS			15			ns
DIN Data to SCLK Hold	tDH			15			ns
LOAD Pulse Width	tLD			20			ns
LSB SCLK to LOAD	tsL			0			ns
LOAD High to SCLK	tLC			15			ns
CLR Pulse Width	tCLR			20			ns
POWER SUPPLY	1	1					1
Supply Voltage	V _{DD}			4.50		5.25	V
		All digital inputs at V _{IL} or V _{IH} , $\overline{\text{CLR}} = \text{V}_{\text{DD}}$			0.5	1.5	mA
Supply Current	IDD	All digital inputs at 0V or V_{DD} , $\overline{CLR} = V_{DD}$			0.4	5	μA
		$\sum_{i=1}^{n} \alpha_{i} \alpha_{i$				-	P

ELECTRICAL CHARACTERISTICS—MAX552

(V_{DD} = +2.7V to +3.6V, V_{REF} = 2.5V, OUT = AGND = GND, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		6	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE								
Resolution	N				12			Bits
Integral Nonlinearity	INL	MAX552A		MAX552A			±1/2	LSB
integral Nornineanty				MAX552B			±1	- LOD
Differential Nonlinearity	DNL	Guaranteed monotonic	over	MAX552A			±1/2	LSB
Differential Nonintearity	DINE	temperature		MAX552B			±1	LOD
Gain Error		Using internal recuback	MAX552A			±1	LSB	
		resistor (R _{FB})	resistor (R _{FB}) MAX552B				±2	LOD
Gain Tempco (ΔGain/ΔTemp)		Using internal feedbac (Note 2)	k resis [.]	tor (R _{FB})		±0.3	±1	ppm/°C
Power-Supply Rejection	PSR	$\Delta V_{DD} = +20\%, -10\%$					1	ppm/%
DYNAMIC PERFORMANCE (N	ote 3)							
Current Settling Time	ts		$T_A = +25^{\circ}$ C, to 1/2LSB, OUT load is 100 Ω II13pF, DAC register alternately loaded with 1s and 0s			0.12	1	μs
Digital-to-Analog Glitch			$V_{REF} = 0V$, OUT load is 100 Ω II13pF, DAC register alternately loaded with 1s and 0s			0.6	20	nV-s
AC Feedthrough at OUT		V _{REF} = 3V _{P-P} at 10kHz with all 0s	$V_{REF} = 3V_{P-P}$ at 10kHz, DAC register loaded with all 0s			0.2	0.6	mV _{P-P}
Total Harmonic Distortion	THD	V _{REF} = 6V _{RMS} at 1kHz with all 1s	, DAC	register loaded		-85		dB
Output Noise-Voltage Density		10Hz to 100kHz, meas OUT	ured b	etween RFB and		13	15	nV/√Hz
REFERENCE INPUT								
Input Resistance	R _{REF}	Measured between RE	F and	OUT	7	11	15	kΩ
Input Resistance Tempco						7.5		ppm/°C
Reference -3dB Bandwidth	BW	$V_{OUT} = 0.31 V_{P-P}, R_L =$	V_{OUT} = 0.31V _{P-P} , R _L = 50 Ω , code = full-scale			725		kHz
ANALOG OUTPUT	·							
OUT Leakage Current		DAC register loaded	T _A =	+25°C		±0.13	±5	nA
	with all 0s $T_A = T_{MIN}$ to T_{MAX}				±25			
OUT Capacitance	Соит	Code = zero code (No	te 2)			14	20	- pF
Cor capacitance	0001	Code = full scale (Note	Code = full scale (Note 2)			20	30	рг

ELECTRICAL CHARACTERISTICS—MAX552 (continued)


(V_{DD} = +2.7V to +3.6V, V_{REF} = 2.5V, VOUT = AGND = GND, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DIGITAL INPUTS							
Input High Voltage	VIH			2.1			V
Input Low Voltage	VIL					0.6	V
Input Hysteresis	HYST	LOAD, CLR, DIN, and	SCLK, V _{DD} = 3V		135		mV
		CLR	$V_{\overline{CLR}} = V_{DD}$			±1	
Input Leakage Current	lin	CLR	$V_{\overline{\text{CLR}}} = 0V$		12	75	μA
		SCLK, LOAD, DIN	Inputs at 0V or V _{DD}			±1	
Input Capacitance	CIN	Inputs at 0V or V_{DD} (No	ote 2)			8	pF
SWITCHING CHARACTERIS	STICS						
SCLK Pulse Width High	tсн			40			ns
SCLK Pulse Width Low	t _{CL}			40			ns
DIN Data to SCLK Setup	tDS			15			ns
DIN Data to SCLK Hold	tDH			15			ns
LOAD Pulse Width	tLD			30			ns
LSB SCLK to LOAD	t _{SL}			0			ns
LOAD High to SCLK	tLC			15			ns
CLR Pulse Width	t _{CLR}			30			ns
POWER SUPPLY							
Supply Voltage	V _{DD}			2.7		3.6	V
Supply Current		All digital inputs at V_{IL}	or V_{IH} , $\overline{CLR} = V_{DD}$		0.1	0.5	mA
Supply Current	IDD	All digital inputs at 0V	or V_{DD} , $\overline{CLR} = V_{DD}$		0.07	5	μA

Note 1: AGND and $\overline{\text{CLR}}$ are for μ MAX only.

Note 2: Guaranteed by design. Not subject to production testing.

Note 3: Parametric limits are provided for design guidance, and are not production tested.

Pin Description

MAX551/MAX552

F			FUNCTION				
DIP	μΜΑΧ		FUNCTION				
1	1	OUT	DAC Current Output				
_	2	AGND	Analog Ground				
2	3	GND	Digital Ground. Also Analog Ground for DIP package.				
3	4	V _{DD}	Supply Voltage				
4	5	LOAD	Active-Low Load DAC Input. Driving this asynchronous input low transfers the contents of the input register to the DAC register.				
5	6	DIN	Serial-Data Input				
6	7	SCLK	Serial-Clock Input. The serial input data is clocked in on SCLK's rising edge.				
_	8	CLR	Clear DAC Input. Clears the DAC register. Tie to V _{DD} or float if not used.				
7	9	REF	Reference Input				
8	10	RFB	Feedback Resistor				

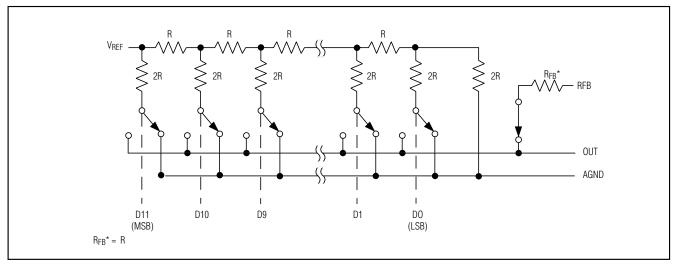


Figure 1. MAX551/MAX552 Simplified Circuit

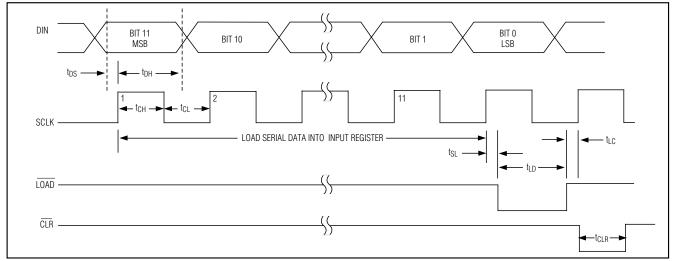


Figure 2. Write-Cycle Timing Diagram

Detailed Description

The MAX551/MAX552 digital-to-analog converter (DAC) circuits consist of a laser-trimmed, thin-film R-2R resistor array with NMOS current switches (Figure 1). Binary-weighted currents are switched to either OUT or AGND, depending on the status of each input data bit. Although the currents at OUT and AGND depend on the digital input code, the sum of the two output currents is always equal to the input current at REF.

The output current (I_{OUT}) can be converted into a voltage by adding an external output amplifier (Figure 3). The REF input accepts a wide range of signals, including fixed and time-varying voltage or current inputs. If a current source is used at the reference input, use a low-tempco, external feedback resistor in place of the

Table 1. Unipolar Binary-Code Tablefor Circuit of Figure 3

DIGITAL INPUT MSB LSB			ANALOG OUTPUT
1111	1111	1111	$-V_{REF}\left(\frac{4095}{4096}\right)$
1000	0000	0000	$-V_{\text{REF}}\left(\frac{2048}{4096}\right) = -\frac{V_{\text{REF}}}{2}$
0000	0000	0001	$-V_{REF}\left(\frac{1}{4096}\right)$
0000	0000	0000	0

internal feedback resistor (RFB) to minimize gain variation with temperature.

The internal feedback resistor (RFB) is compensated with an NMOS switch that matches the NMOS switches used in the R-2R array, resulting in excellent supply rejection and gain-temperature coefficient.

The OUT pin output capacitance (C_{OUT}) is code dependent. C_{OUT} is typically 14pF at 000hex and 20pF at FFFhex.

Serial Interface

The MAX551/MAX552 serial interface is compatible with the SPI/QSPI and MICROWIRE serial-interface standards. These devices accept serial clocks up to 12.5MHz (50% duty cycle). If the SCLK input is not

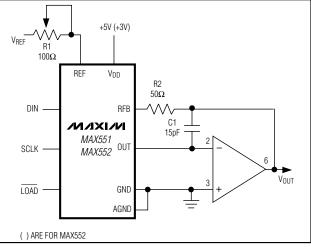


Figure 3. Unipolar Operation

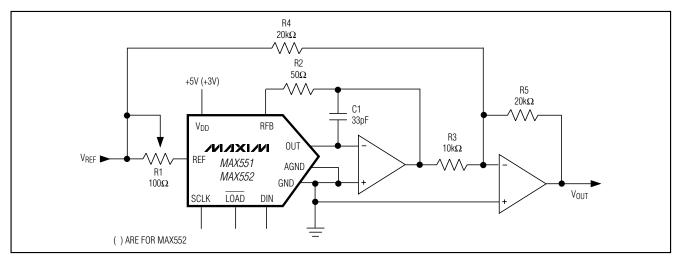


Figure 4. Bipolar Operation

Table 2. Offset Binary-Code Tablefor Circuit of Figure 4

DI MSB	IGITAL INF	PUT LSB	ANALOG OUTPUT
1111	1111	1111	$+V_{\text{REF}}\left(\frac{2047}{2048}\right)$
1000	0000	0001	$+V_{\text{REF}}\left(\frac{1}{2048}\right)$
1000	0000	0000	0
0111	1111	1111	$-V_{REF}\left(\frac{1}{2048}\right)$
0000	0000	0000	$-V_{REF}\left(\frac{2048}{2048}\right)$

symmetrical, then the clock signal used must meet the t_{CH} and t_{CL} requirements given in the *Electrical Characteristics*.

Figure 2 shows the MAX551/MAX552 timing diagram. The most significant bit (MSB) is always loaded first on SCLK's rising edge. When all data is shifted into the input register, the DAC register is loaded by driving the LOAD signal low. The DAC register is transparent when LOAD is low and latched when LOAD is high. The MAX551/MAX552 digital inputs are compatible with CMOS logic levels. The MAX551's inputs are also compatible with TTL logic.

Unipolar Operation

MAX551/MAX552

Figure 3 shows the MAX551/MAX552's basic application. This circuit is used for unipolar operation or 2quadrant multiplication. The code table for this mode is given in Table 1. Note that the output's polarity is the opposite of the reference voltage polarity.

In many applications the gain accuracy is sufficient and gain adjustment is not necessary. In these cases, resistors R1 and R2 in Figure 3 can be omitted. If the gain is trimmed and the DAC is operated over a wide temperature range, use low-tempco (<300ppm/°C) resistors for R1 and R2. Capacitor C1 provides phase compensation and reduces overshoot and ringing when fast amplifiers are used at the DAC's output.

Bipolar Operation

Figure 4 shows the MAX551/MAX552 operating in bipolar (or 4-quadrant multiplying) mode. Matched resistors R3, R4, and R5 must be of the same material (preferably metal film or wire-wound) for good temperaturetracking characteristics (<15ppm/°C) and should match to 0.01% for 12-bit performance. The output code is offset binary, as listed in Table 2.

To adjust the circuit, load the DAC with a code of 1000 0000 0000 and trim R1 for a 0V output. With R1 and R2 omitted, an alternative zero trim is needed to adjust the ratio of R3 and R4 for 0V out. Trim full scale by loading the DAC with all 0s or 1s and adjusting the V_{REF} amplitude or varying R5 until the desired positive or negative output is obtained. In applications where gain trim is not required, omit resistors R1 and R2. If gain trim is desired and the DAC is operated over a wide temperature range, then low-tempco (<300ppm/°C) resistors should be used.

MAX551/MAX552

Applications Information

Output Amplifier

For best linearity, terminate OUT and GND at exactly OV. In most applications, OUT is connected to an inverting op amp's summing junction. The amplifier's input offset voltage can degrade the DAC's linearity by causing OUT to be terminated to a nonzero voltage. The resulting error is:

Error Voltage = Vos (1 + RFB / RO)

where V_{OS} = is the op amp's offset and R_O is the DAC's output resistance, which is code dependent. The maximum error voltage (R_O = R_{FB}) is 2V_{OS}; the minimum error voltage (R_O = ∞) is V_{OS}. To minimize this error, use a low-offset amplifier such as the MAX4166 (unipolar output) or the MAX427 (bipolar output). Otherwise, the amplifier offset must be trimmed to zero. A good guide rule is that V_{OS} should be no more than 1/10LSB.

The output amplifier's input bias current (I_B) can also limit performance, since I_B x R_{FB} generates an offset error. Choose an op amp with an I_B much less than (e.g., one-tenth) the DAC's 1LSB output current (typically 111nA when V_{REF} = 5V, and 55.5nA when V_{REF} = 2.5V). Offset and linearity can also be impaired if the output amplifier's noninverting input is grounded through a bias-current compensation resistor. This resistor adds to the offset at this pin and thus should not be used. For best performance, connect the noninverting input directly to ground.

In static or DC applications, the output amplifier's characteristics are not critical. In higher speed applications in which either the reference input is an AC signal or the DAC output must quickly settle to a new programmed value, the output op amp's AC parameters must be considered.

A compensation capacitor, C1, may be required when the DAC is used with a high-speed output amplifier. The purpose of the capacitor is to cancel the pole formed by the DAC output capacitance, C_{OUT}, and the internal feedback resistor, R_{FB}. Its value depends on the type of op amp used but typically ranges from 14pF to 30pF. Too small a value causes output ringing, while excess capacitance overdamps the output. C1's size can be minimized and the output voltage settling time improved by keeping the circuit-board trace short and stray capacitance at OUT as low as possible.

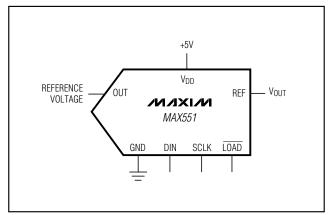


Figure 5. Single-Supply, Voltage Mode Operation

Single-Supply Operation

Reference Voltage

The MAX551/MAX552 are true 4-quadrant DACs, making them ideal for multiplying applications. The reference input accepts both AC and DC signals within a voltage range of \pm 6V. The R-2R ladder is implemented with thin-film resistors, enabling the use of unipolar or bipolar reference voltages with only a single power supply for the DAC. The voltage at the V_{REF} input sets the DAC's full-scale output voltage.

If the reference is too noisy, it should be bypassed to GND (AGND on the 10-pin μ MAX package) with a 0.1 μ F ceramic capacitor located as close to the REF pin as possible.

Voltage Mode (MAX551)

MIXIM

The MAX551 can be conveniently used in voltage mode, single-supply operation with OUT biased at any voltage between GND and V_{DD} . OUT must not be allowed to go 0.3V lower than GND or 0.3V higher than V_{DD} . Otherwise, internal diodes turn on, causing a high current flow that could damage the device.

Figure 5 shows the MAX551 connected as a voltage output DAC. In this mode of operation, the OUT pin is connected to the reference-voltage source, and the GND pin is connected to the PCB ground plane. The DAC output now appears at the REF pin, which has a constant resistance equal to the reference input resistance (11k Ω typ). This output should be buffered with an op amp when a lower output impedance is required. The RFB pin is not used in this mode. The reference input (OUT) impedance is code dependent, and the circuit's response time depends on the reference source's behavior with changing load conditions.

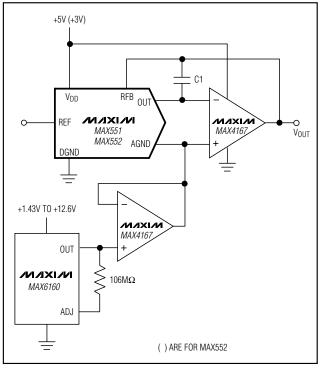


Figure 6. Single-Supply, Current Mode Operation

An advantage of voltage mode operation is that a negative reference is not required for a positive output. Note that the reference input (OUT) must always be positive and is limited to no more than 2V when V_{DD} is 5V. The unipolar and bipolar circuits in Figures 3 and 4 can be converted to voltage mode.

Current Mode Figure 6 shows the MAX551/MAX552 in a current output configuration in which the output amplifier is powered from a single supply, and AGND is biased to 1.23V. With 0V applied to the REF input, the output can be programmed from 1.23V (zero code) to 2.46V (full scale). With 2.45V applied to REF, the output can be programmed from 1.23V (zero code) to 0.01V (full scale).

The MAX4166 op amp that drives AGND maintains the 1.23V bias as AGND's impedance changes with the DAC's digital code, from high impedance (zero code) to $7k\Omega$ minimum (full scale).

Using an AC Reference

In applications where reference voltage has AC signal components, the MAX551/MAX552 have multiplying capability within the reference input range of \pm 6V. If the DAC and the output amplifier are operated with a single

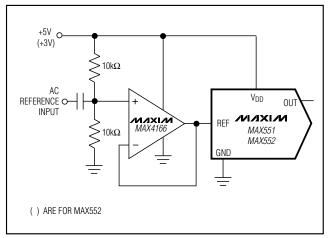


Figure 7. Single-Supply AC Reference Input Circuit

supply voltage, then an AC reference input can be offset with the circuit shown in Figure 7 to prevent the DAC output voltage from exceeding the output amplifier's negative output rail. The reference input's typical -3dB bandwidth is greater than 700kHz, as shown in the *Typical Operating Characteristics* graphs.

Offsetting AGND

The MAX551/MAX552 provide separate AGND and GND inputs in the μ MAX package. With this package, AGND can be biased above GND to provide an arbitrary nonzero output voltage for a "0" input code (Figure 8).

Layout, Grounding, and Bypassing

Bypass V_{DD} with a 0.1μ F capacitor, located as close to V_{DD} and GND as possible. The ground pins (AGND and GND) should be connected in a star configuration to the highest quality ground available, which should be located as close to the MAX551/MAX552 as possible.

Since OUT and the output amplifier's noninverting input are sensitive to offset voltage, nodes that are to be grounded should be connected directly to a single-point ground through a separate, low-resistance (less than 0.2 Ω) connection. The current at OUT and AGND varies with input code, creating a code-dependent error if these terminals are connected to ground (or virtual ground) through a resistive path.

Parasitic coupling of the signal from REF to OUT is an error source in dynamic applications. This coupling is normally a function of board layout and pin-to-pin package capacitance. Minimize digital feedthrough with guard traces between digital inputs, REF, and OUT pins.

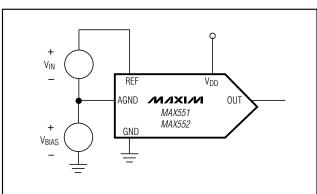


Figure 8. AGND Bias Current

MAX551/MAX552

The MAX551/MAX552 have high-impedance digital inputs. To minimize noise pickup, tie them to either V_{DD} or GND when they are not in use. As a good practice, connect active inputs to V_{DD} or GND through high-value resistors (1M Ω) to prevent static charge accumulation if the pins are left floating, such as when a circuit card is left unconnected.

The $\overline{\text{CLR}}$ input on the μ MAX device has an internal pullup resistor with a typical value of 125k Ω . If the $\overline{\text{CLR}}$ input is not used, tie it to V_{DD} to minimize supply current.

_Ordering Information (continued)

PART	TEMP RANGE	PIN- PACKAGE	LINEARITY (LSB)
MAX552ACPA	0°C to +70°C	8 Plastic DIP	±1/2
MAX552BCPA	0°C to +70°C	8 Plastic DIP	±1
MAX552ACUB	0°C to +70°C	10 µMAX	±1/2
MAX552BCUB	0°C to +70°C	10 µMAX	±1
MAX552AEPA	-40°C to +85°C	8 Plastic DIP	±1/2
MAX552BEPA	-40°C to +85°C	8 Plastic DIP	±1
MAX552AEUB	-40°C to +85°C	10 µMAX	±1/2
MAX552BEUB	-40°C to +85°C	10 µMAX	±1

Chip Information

TRANSISTOR COUNT: 887 SUBSTRATE CONNECTED TO VDD

Package Information

For the latest package outline information, go to **www.maxim-ic.com/packages**.

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.