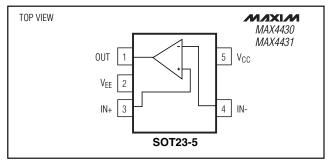


General Description

The MAX4430/MAX4431 single and MAX4432/MAX4433 dual operational amplifiers feature wide bandwidth, 16bit settling times in 37ns, and low-noise/low-distortion operation. The MAX4430/MAX4432 are compensated for unity gain stability and have a small signal -3dB bandwidth of 180MHz. The MAX4431/MAX4433 are compensated for closed-loop gains of +2 or greater and have a small-signal -3dB bandwidth of 215MHz.

The MAX4430-MAX4433 op amps require only 11mA of supply current per amplifier while achieving 125dB openloop gain. Voltage noise density is a low 2.8nV/√Hz, and provides 100dB spurious-free dynamic range (SFDR) at 1MHz. These characteristics make these op amps ideal for driving modern high-speed 14- and 16bit analog-to-digital converters (ADCs).


These high-speed op amps feature wide output voltage swings capable of driving ADCs with ≥4V input dynamic range and a high current output drive up to 60mA. Using a voltage feedback architecture, the MAX4430-MAX4433 meet the requirements of many applications that previously depended on current feedback amplifiers.

The MAX4430/MAX4431 are available in a space-saving 5-pin SOT23 package, and the MAX4432/MAX4433 are available in an 8-pin µMAX package.

Applications

High-Speed 14- and 16-Bit ADC Preamplifiers Low-Noise Preamplifiers IF/RF Amplifiers Low-Distortion Active Filters High-Performance Receivers Precision Instrumentation

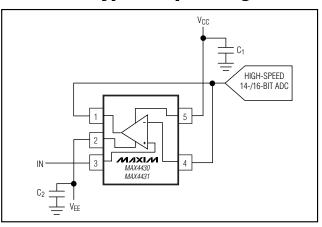
Pin Configurations

Pin Configurations continued at end of data sheet.

Features

- ♦ 16-Bit Accurate Settling in 37ns (MAX4430/MAX4432)
- ♦ 100dB SFDR at 1MHz, 4Vp-p Output
- ♦ 2.8nV/√Hz Input Voltage Noise Density
- ♦ 110dB (min) Open-Loop Gain
- ♦ 145V/µs Slew Rate (MAX4431/MAX4433)
- ♦ 60mA High Output Drive
- ♦ Wide Voltage Swing Capable of Driving ADC Inputs with ≥4Vp-p Input Dynamic Range
- ♦ Available in Space-Saving Packages 5-pin SOT23 (MAX4430/MAX4431) 8-pin µMAX (MAX4432/MAX4433)

Ordering Information


PART	TEMP. RANGE	PIN-PACKAGE
MAX4430EUK-T	-40°C to +85°C	5 SOT23-5
MAX4430ESA	-40°C to +85°C	8 SO

Ordering Information continued at end of data sheet.

Selector Guide

PART	AMPS	MIN GAIN STABLE (V/V)	BW (MHz)	SETTLING TIME TO 0.0015% (ns)
MAX4430	1	+1	180	37
MAX4431	1	+2	215	63
MAX4432	2	+1	180	37
MAX4433	2	+2	215	63

Typical Operating Circuit

MIXIM

Maxim Integrated Products 1

For free samples and the latest literature, visit www.maxim-ic.com or phone 1-800-998-8800. For small orders, phone 1-800-835-8769.

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to V _{EE})	
Input Voltage Range(V _{CC} + 0.3V) to (V _{EE}	
Output Short-Circuit Duration to VCC or VEE(I	
Current Into Any Input Pin	±25mÅ
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
5-Pin SOT23 (derate 7.1mW/°C above +70°C)5	571mW
8-Pin µMAX (derate 4.5mW/°C above +70°C)	330mW
8-Pin SO (derate 5.88mW/°C above +70°C)	171mW

Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: The MAX4430–MAX4433 are not protected for output short-circuit conditions.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(V_{CC} = +5V, V_{EE} = -5V, R_L = ∞, V_{CM} = 0, and T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 2)

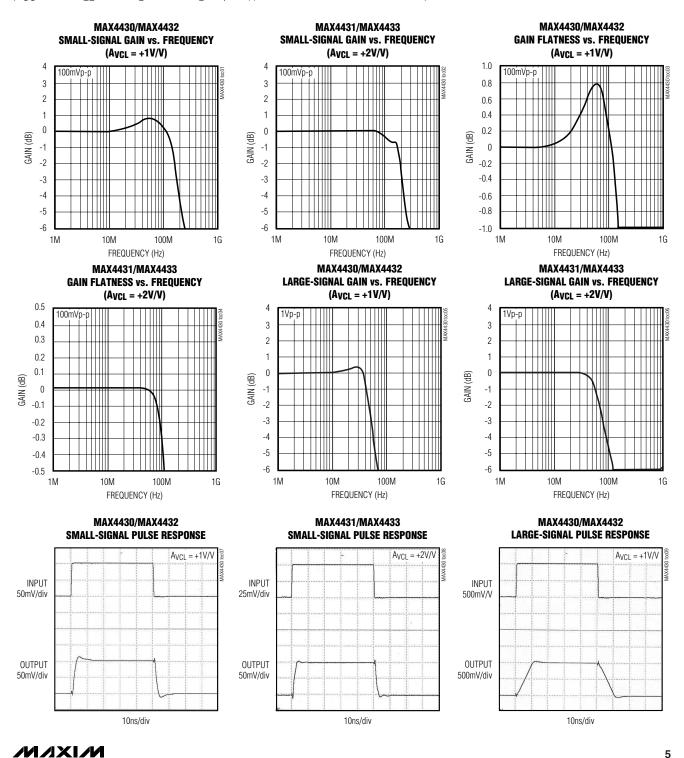
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Common-Mode Voltage Range	V _{CM}	Guaranteed by CMRR test	V _{EE} + 2.5		V _{CC} - 0.9	V	
Input Offset Voltage	Vos			±1.25	±5	mV	
Input Offset Voltage Temperature Coefficient	TC _{VOS}			7		μV/°C	
Input Offset Voltage Matching		MAX4432/MAX4433		±0.25		mV	
Input Bias Current	ΙΒ			11	30	μΑ	
Input Offset Current	los			0.35	5	μΑ	
Innut Decistance	Du	Differential (-10mV \leq V _{IN} \leq +10mV)		12k		0	
Input Resistance	R _{IN}	Common mode ($V_{EE} + 2.5V \le V_{CM} \le V_{CC} - 0.9V$)		1M		Ω	
Common-Mode Rejection Ratio	CMRR	V _{EE} + 2.5V ≤ V _{CM} ≤ V _{CC} - 0.9V	100	120		dB	
Open-Loop Gain	Avol	V_{EE} + 2.5 \leq V_{OUT} \leq V_{CC} - 0.9 $V_{;}$ R_{L} = 10 $k\Omega$ to ground	115	125		2	
		V_{EE} + 2.5 \leq V_{OUT} \leq V_{CC} - 0.9 V_{T} ; R_{L} = 500 Ω to ground	110	125		dB	
Output Valta and Cuita a	Vout	$R_L = 10k\Omega$ to ground	V _{EE} + 2.5		V _{CC} - 0.25	V	
Output Voltage Swing		$R_L = 500\Omega$ to ground	V _{EE} + 2.6		V _{CC} - 0.6	V	
Output Current	lout	$R_L = 20\Omega$ to ground	±30	±60		mA	
Output Short-Circuit Current	Isc	Sinking or sourcing		±100		mA	
Develop Consider Daties	PSRR-	V _{EE} = -5.5V to -4.5V	75	05		-ID	
Power-Supply Rejection Ratio	PSRR+	$V_{CC} = +4.5V \text{ to } +5.5V$	/5	95		dB	
Operating Supply Voltage Range	Vs	Guaranteed by PSRR test	±4.5		±5.5	V	
Quiescent Supply Current (per amplifier)	IS			11	13.5	mA	

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, V_{CM} = 0, A_{VCL} = +1, T_A = +25^{\circ}C, unless otherwise noted.)$

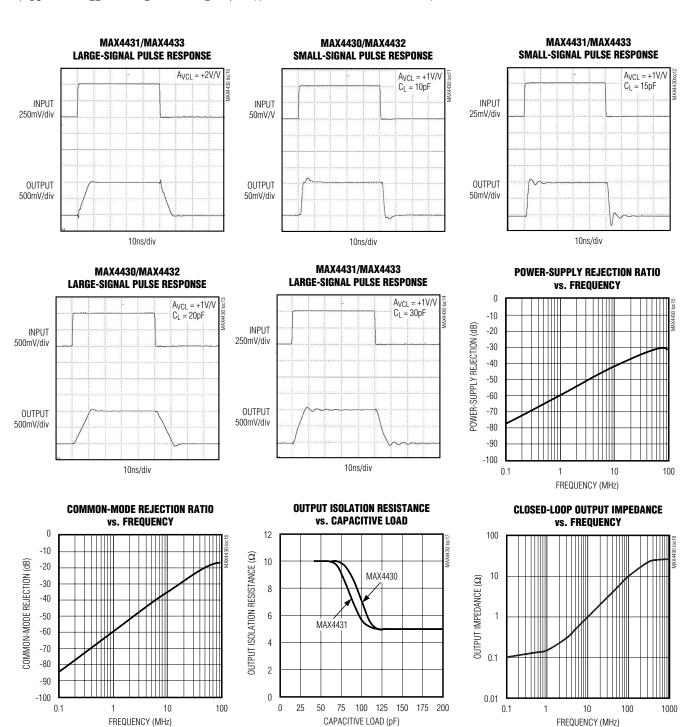
PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS	
Small-Signal -3dB Bandwidth	BW _{SS}	V _{OUT} = 100mVp-p, MAX4430/MAX4432		180		MHz	
Smail-signal -sub bandwidth		V _{OUT} = 100mVp-p, MAX4431/MAX4433 (A _{VCL} = +2)		215		1711 12	
		V _{OUT} = 1Vp-p, MAX4430/MAX4432		45			
Large-Signal -3dB Bandwidth	BWLS	V _{OUT} = 2Vp-p, MAX4430/MAX4432		32		MHz	
Large-Signal -Sub Bandwidth	DWLS	V _{OUT} = 2Vp-p, MAX4431/MAX4433 (A _{VCL} = +2)		40		IVII	
		V _{OUT} = 4Vp-p, MAX4431/MAX4433 (A _{VCL} = +2)		20			
Bandwidth for 0.1dB Flatness	DW ₀	V _{OUT} = 100mVp-p, MAX4430/MAX4432		12		MHz	
Dandwidth for 0. 10D Flatness	BW _{0.1dB}	V _{OUT} = 100mVp-p, MAX4431/MAX4433 (A _{VCL} = +2)		80		IVI⊓Z	
Slew Rate	SR	V _{OUT} = 2V step, MAX4430/MAX4432		100		V/µs	
Siew Hate		V _{OUT} = 2V step, MAX4431/MAX4433 (A _{VCL} = +2)		145			
Rise/Fall Time	to te	V _{OUT} = 2V step	20			no	
nise/Faii Time	t _R , t _F	V _{OUT} = 4V step		40		ns	
Settling Time to 16 Bit (0.0015%)	ts	V _{OUT} = 0 to 2V step, MAX4430/MAX4432		37			
		V _{OUT} = 0 to 2V step, MAX4431/MAX4433 (A _{VCL} = +2)		63		ns	
		V _{OUT} = 0 to 4V step, MAX4430/MAX4432		56			
		V _{OUT} = 0 to 4V step, MAX4431/MAX4433 (A _{VCL} = +2)		140			

AC ELECTRICAL CHARACTERISTICS (continued)

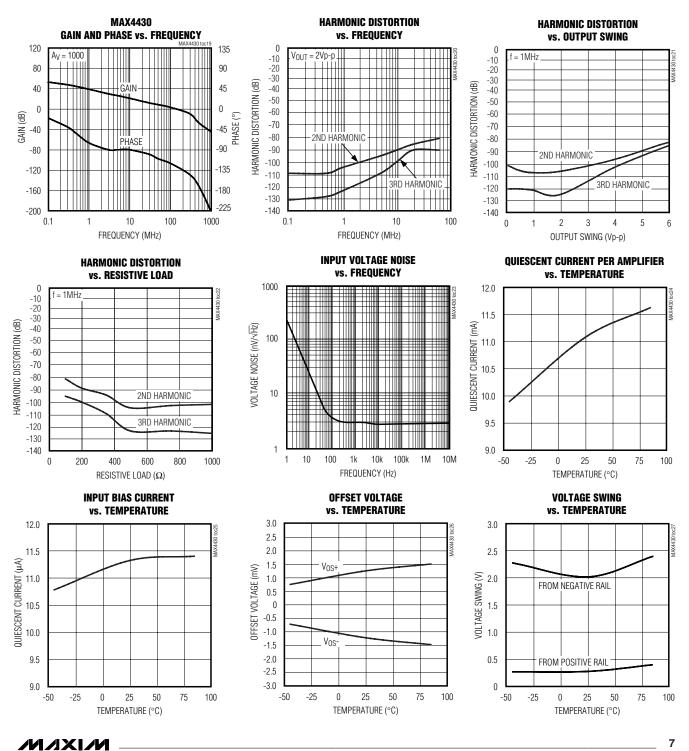

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, V_{CM} = 0, A_{VCL} = +1, T_A = +25$ °C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Output "Glitch" Settling to 16-Bit (0.0015%)		5pF load; C _L charged from 0 to 4V		24		ns
Output Overload Recovery Time		50% overdrive, settling to 10% accuracy		95		ns
AC Common-Mode Rejection Ratio		f = 100kHz		-84		dB
AC Power-Supply Rejection Ratio		f = 100kHz		-77		dB
		$V_{OUT} = 2V_{p-p}$ centered at 0V, $f_{C} = 100$ kHz		-110		
		V _{OUT} = 2Vp-p centered at 0V, f _C = 1MHz		-105		
		$V_{OUT} = 4V_{p-p}$ centered at 0V, $f_{C} = 100$ kHz		-105		
		$V_{OUT} = 4V_{p-p}$ centered at 0V, $f_{C} = 1MHz$		-103		
Spurious-Free Dynamic Range	SFDR	V _{OUT} = 2Vp-p centered at 1V, f _C = 100kHz		-112	dBc	
		V _{OUT} = 2Vp-p centered at 1V, f _C = 1MHz		-107		ивс
		V _{OUT} = 4Vp-p centered at 2V, f _C = 100kHz		-106		
		V _{OUT} = 4Vp-p centered at 2V, f _C = 1MHz		-100		
		$V_{OUT} = 4V_{p-p}$ centered at 2V, $f_{C} = 1MHz$ ($R_{L} = 1k\Omega$)		-99		
		$V_{OUT} = 4V_{p-p}$ centered at 2V, $f_{C} = 1MHz$ ($R_{L} = 10k\Omega$)		-100		
Input Noise Voltage Density	en	f = 100kHz		2.8		nV/√Hz
Input Noise Current Density	in	f = 100kHz		1.8		pA√Hz
Input Capacitance	CIN			2.5		pF
Maximum Capacitive Load Without Sustained Oscillations				47		рF
Output Impedance	Z _{OUT}	f = 1MHz		0.2		Ω
Crosstalk		MAX4432/MAX4433 f _C = 1MHz		-125		dB

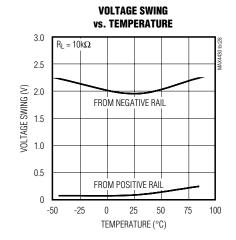
Note 2: All devices are 100% production tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

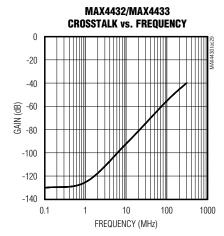

Typical Operating Characteristics

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, C_L = 0pF, T_A = +25^{\circ}C, unless otherwise noted.)$


Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, C_L = 0pF, T_A = +25^{\circ}C$, unless otherwise noted.)


Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, C_L = 0pF, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{CC} = +5V, V_{EE} = -5V, R_L = 500\Omega, C_L = 0pF, T_A = +25^{\circ}C, unless otherwise noted.)$

Pin Description

I	PIN			
MAX443	MAX4430/MAX4431		FUNCTION	
5 SOT23	8 SO			
1	6	OUT	Output	
2	4	V _{EE}	Negative Power Supply	
3	3	IN+	Noninverting Input	
4	2	IN-	Inverting Input	
5	7	V _{CC}	Positive Power Supply	
_	1, 5, 8	N.C.	No Connection. Not internally connected.	

PIN			
MAX4432/MAX4433	NAME	FUNCTION	
8 SO/8 μMAX			
1	OUTA	Amplifier A Output	
2	INA-	Amplifier A Inverting Input	
3	INA+	Amplifier A Noninverting Input	
4	VEE	Negative Power Supply	
5	INB+	Amplifier B Noninverting Input	
6	INB-	Amplifier B Inverting Input	
7	OUTB	Amplifier B Output	
8	Vcc	Positive Power Supply	

Detailed Description

The MAX4430–MAX4433 are wide-bandwidth, ultra-low-distortion, voltage-feedback amplifiers. The MAX4430/MAX4432 are internally compensated for unity gain. The MAX4431/MAX4433 are internally compensated for gains of +2V/V or greater.

These amplifiers have ultra-fast 37ns (MAX4430/MAX4432) 16-bit settling times, 100dB SFDR at 1MHz, and 4Vp-p output swing with minimum 110dB openloop gain.

High-Speed ADC Input Driver Application

The MAX4430–MAX4433 op amps are ideal for driving high-speed 14- to 16-bit ADCs. In most cases, these ADCs operate with a charge balance scheme, with capacitive loads internally switched on and off from the input. The driver used must withstand these changing capacitive loads while holding the signal amplitude stability consistent with the ADC's resolution and, at the same time, have a frequency response compatible with the sampling speed of the ADC (Figure 1).

Inverting and Noninverting Configurations

The circuits typically used for the inverting and non-inverting configurations of the MAX4430–MAX4433 are shown in Figures 2a and 2b. The minimum unconditionally stable gain values are 1 for the MAX4430/MAX4432

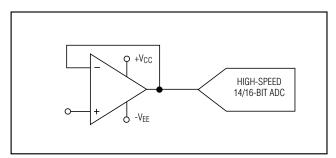


Figure 1. Typical Application Circuit

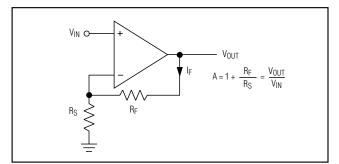


Figure 2a. Noninverting Configuration

and 2 for the MAX4431/MAX4433. Use care in selecting the value for the resistor marked Rs in both circuits. From dynamic stability considerations (based on the part's frequency response and the input capacitance of the MAX4430–MAX4433), the maximum recommended value for Rs is 500Ω . In general, lower Rs values will yield a higher bandwidth and better dynamic stability, at the cost of higher power consumption, higher power dissipation in the IC, and reduced output drive availability. For a minimum Rs value, take into consideration that the current indicated as IF is supplied by the output stage and must be discounted from the maximum output current to calculate the maximum current available to the load. IF can be found using the following equation:

If DC thermal stability is an important design concern, the Thevenin resistance seen by both inputs at DC must be balanced. This includes the resistance of the signal source and termination resistors if the amplifier signal input is fed from a transmission line. The capacitance associated with the feedback resistors must also be considered as a possible limitation to the available bandwidth or to the dynamic stability. Only resistors with small parallel capacitance specifications should be considered.

Applications Information

Layout and Power-Supply Bypassing

The MAX4430–MAX4433 have wide bandwidth and consequently require careful board layout. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have a large low-impedance ground plane that is as free of voids as possible. Do not use commercial breadboards. Keep signal lines as short and straight as possible. Observe high-frequency bypassing techniques to maintain the

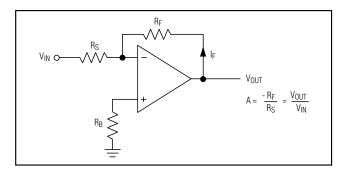


Figure 2b. Inverting Configuration

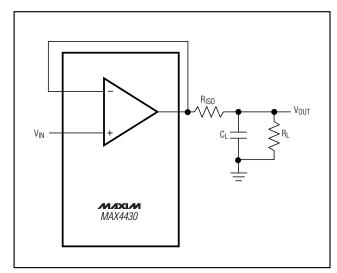
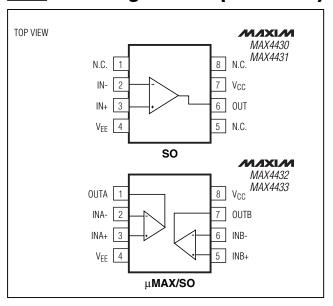


Figure 3. Capacitive-Load Driving Circuit

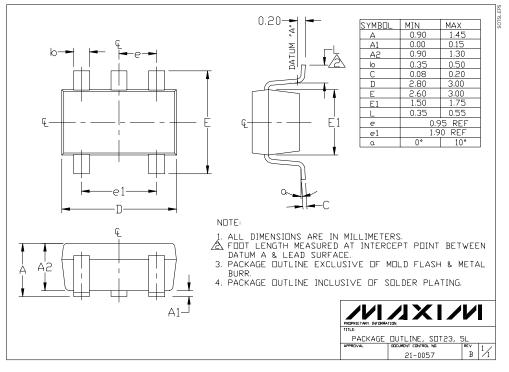
amplifier's accuracy and stability. In general, use surface-mount components since they have shorter bodies and lower parasitic reactance. This will result in improved performance over through-hole components. The bypass capacitors should include 1nF and/or 0.1µF surface-mount ceramic capacitors between each supply pin and the ground plane, located as close to the package as possible. Place a $10\mu F$ tantalum capacitor at the power supply's point of entry to the PC board to ensure the integrity of the incoming supplies. Input termination resistors and output back-termination resistors, if used, should be surface-mount types and should be placed as close to the IC pins as possible.

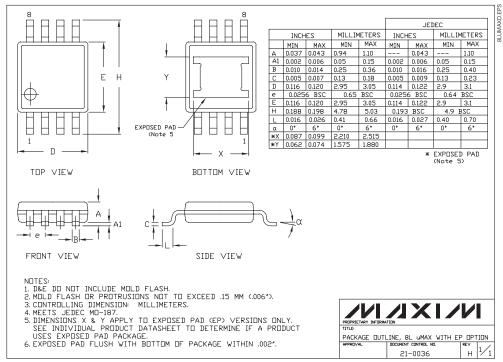

Driving Capacitive Loads

MAX4430-MAX4433 can drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small isolation resistor in series with the output capacitive load helps reduce the ringing but slightly increases gain error (see *Typical Operating Characteristics* and Figure 3).

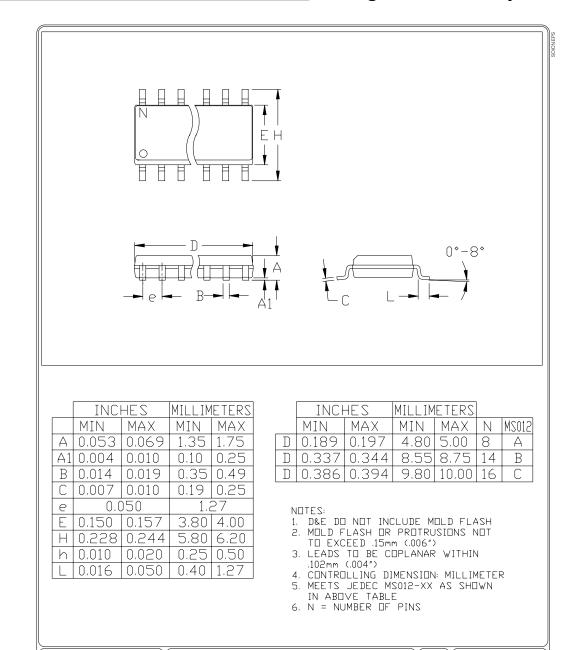
_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE
MAX4431EUK-T	-40°C to +85°C	5 SOT23-5
MAX4431ESA	-40°C to +85°C	8 SO
MAX4432EUA	-40°C to +85°C	8 μMAX
MAX4432ESA	-40°C to +85°C	8 SO
MAX4433EUA	-40°C to +85°C	8 μMAX
MAX4433ESA	-40°C to +85°C	8 SO


Pin Configurations (continued)



Chip Information


TRANSISTOR COUNT: MAX4430/MAX4431: 103 MAX4432/MAX4433: 248

Package Information

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

PACKAGE FAMILY DUTLINE: SDIC .150'

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2000 Maxim Integrated Products

Printed USA

is a registered trademark of Maxim Integrated Products.

21-0041