Notice for TAIYO YUDEN products

Please read this notice before using the TAIYO YUDEN products.

REMINDERS

Product information in this catalog is as of October 2010. All of the contents specified herein are subject to change without notice due to technical improvements, etc. Therefore, please check for the latest information carefully before practical application or usage of the Products.

Please note that Taiyo Yuden Co., Ltd. shall not be responsible for any defects in products or equipment incorporating such products, which are caused under the conditions other than those specified in this catalog or individual specification.

- Please contact Taiyo Yuden Co., Ltd. for further details of product specifications as the individual specification is available.
- Please conduct validation and verification of products in actual condition of mounting and operating environment before commercial shipment of the equipment.
- All electronic components or functional modules listed in this catalog are developed, designed and intended for use in general electronics equipment.(for AV, office automation, household, office supply, information service, telecommunications, (such as mobile phone or PC) etc.). Before incorporating the components or devices into any equipment in the field such as transportation,(automotive control, train control, ship control), transportation signal, disaster prevention, medical, public information network (telephone exchange, base station) etc. which may have direct influence to harm or injure a human body, please contact Taiyo Yuden Co., Ltd. for more detail in advance. Do not incorporate the products into any equipment in fields such as aerospace, aviation, nuclear control, submarine system, military, etc. where higher safety and reliability are especially required.

In addition, even electronic components or functional modules that are used for the general electronic equipment, if the equipment or the electric circuit require high safety or reliability function or performances, a sufficient reliability evaluation check for safety shall be performed before commercial shipment and moreover, due consideration to install a protective circuit is strongly recommended at customer's design stage.

The contents of this catalog are applicable to the products which are purchased from our sales offices or distributors (so called "TAIYO YUDEN' s official sales channel").

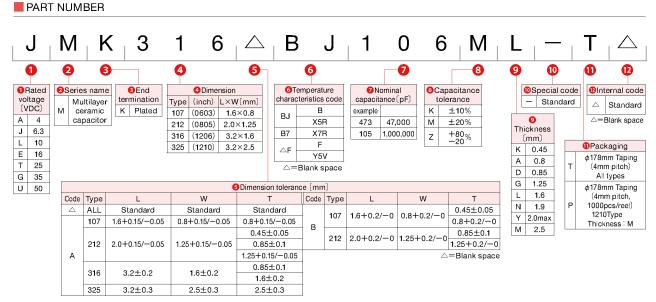
It is only applicable to the products purchased from any of TAIYO YUDEN's official sales channel.

Please note that Taiyo Yuden Co., Ltd. shall have no responsibility for any controversies or disputes that may occur in connection with a third party's intellectual property rights and other related rights arising from your usage of products in this catalog. Taiyo Yuden Co., Ltd. grants no license for such rights.

Caution for export

Certain items in this catalog may require specific procedures for export according to "Foreign Exchange and Foreign Trade Control Law" of Japan, "U.S. Export Administration Regulations", and other applicable regulations. Should you have any question or inquiry on this matter, please contact our sales staff.

HIGH VALUE MULTILAYER CERAMIC CAPACITORS


FEATURES

- The use of nickel as electrode material and plating processing improve the solderability and heat resistance characteristics. It also prevents migration and raises the level of reliability.
- Low equivalent series resistance(ESR) provides superior noise absorption characteristics.
- Compared to tantalum or aluminum electrolytic capacitors, multilayer ceramic capacitors offer a number of superior features, including: Higher permissible ripple current values Smaller case sizes with high rated voltage

Improved reliability due to higher insulation resistance and breakdown voltage.

APPLICATIONS

- General digital circuit
- Power supply bypass capacitors Liquid crystal modules
 Liquid crystal drive voltage lines
 LSI, IC, converters(both for input and output)
- Smoothing capacitors
 DC-DC converters (for both input and output
- DC-DC converters (for both input and output) Switching power supplies (secondary side)

STANDARD EXTERNAL DIMENSIONS/STANDARD QUANTITY

	Туре			Dimension [mm]			Standard	quantity [pcs]
W	туре	L	W	Т		e	Paper tape	Embossed tape
	☐MK107	1.6 ± 0.10	0.8±0.10	0.45 ± 0.05	K	0.35 ± 0.25	4000	
	(0603 inch)	1.6±0.10	0.810.10	0.8±0.10	А	0.35±0.25	4000	_
				0.45 ± 0.05	К		4000	
	□MK212 (0805 inch)	2.0±0.10	1.25±0.10	0.85±0.10	D	0.5 ± 0.25	4000	_
e e	(0000 mon)			1.25±0.10	G		_	3000
· ·				0.85±0.10	D		4000	_
	MK316 (1206 inch)	3.2±0.15	1.6±0.15	1.25±0.10	G	0.5+0.35/-0.25		3000
	(1200 mon)			1.6±0.20	L		_	2000
				0.85±0.10	D			
	MK325	0.01.0.00	0.510.00	1.9±0.20	Ν	0.01.0.0		2000
	(1210 inch)	3.2±0.30	2.5±0.20	1.9+0.1/-0.2	Y	0.6 ± 0.3		
				2.5±0.20	М			500(T), 1000(P)

AVAILABLE CAPACITANCE RANGE

	T								10	07														213	2												3	316							Τ						32	5					
Cap	Туре		>	<7F	}				В	/X	5R				F/	Y5۱	/			Χ7	R		Τ	В	/X5	iΒ		F	7Y5	V		2	X7F	7			E	3/X	5R			F.	/Y5	V			X7F	3			E	3/X	δR		F	/Y	5V
[μF]	VDC	50	25	16	10	6.3	50	35	25	16	6 10) 6.	3 4	5	0 23	5 16	i 10	50	35	25	16	10 6.3	3 50	25	16	10	6.3	50 ·	16 1	0 6.	3 5	0 25	16	10	6.3	50	25	16	10	6.3	4	35 2	51	6 1	0 50	0 25	16	10	6.3	50	35	25 1	61	0 6.3	16	i 10	6.3
	(3-digit)																																																								
0.1	104													Α	1			G					G																																		
0.15	154																																																								
0.22	224	Α		А	А	А			Α	A	A					A		G					G	i							L	-																									
0.33	334																																																								
0.47	474	Α	А	А	А	А	А		Α	A	A				A	A		G					G					G			L	-																							Т		\square
0.68	684										Т				Т								Г								Т													Т										Т	Г		\Box
1	105		А	Α	А	А	А	A	Α	A	A					A	A	G	G	G	G	G	G					G			L	. L				L																					
2.2	225				А				А	A	A	A	1			A	A			G	G	G		G	G	G		1	G		L	. L	L	L			L	L													N						
3.3	335																																													N						N					-
4.7	475									A	A	F	1							G	G	G		G	G	G	G		0	3	L	. L		L		L	L	L							N	1 N	N			М	Ν	N	N				
6.8	685																																																								
10	106										A	A	AA	1								GC			G	G	G		(3 0	à	L	L	L	L		L	L	L	L		LI	- L	-			N	N		М	N	V.N I	NN	1			
22	226												P	1												G	G							L				L	L	L				L		M	м					1	MM	Y Y	N	N	
47	476																										G												L	L								М	м				MN	A M.)	1		N
100	107																																							L	L												Ν	A MA			-
Note :	Letters	s in	the	e ta	ıble	e in	dic	ate	e pi	roc	Juc	et t	hic	kne	əss	.		X5	Rc	nly																																					

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

	Tupo		10)7						2	212									316	;				;	325	j
Cap	Туре		B/>	(5R		X	7R		E	3/X	5R		E,	/Y5	V		В	/X5	R			F/Y	′5V		В	/X5	R
(μF)	VDC	25	16	10	6.3	16	10	50	25	16	10	6.3	50	10	6.3	50	25	16	10	6.3	50	35	10	6.3	25	16	10
	(3-digit)																										
0.1	104																										_
0.22	224												D														
0.33	334																										
0.47	474					D			D																		
0.68	684																										
1	105	Κ	K	Κ	K	D	D	D	D	D	D					D	D										
2.2	225			K	K	D	D		D	D	D			D		D	D	D			G						
3.3	335																										D
4.7	475			K	K		D		D	D	D. K	D.K			D	D	D	D	D			G	D				D
6.8	685																										
10	106									D	D	D.K					D	D	D	D				D	D	D	D
22	226											D						D	D	D						D	
47	476																			D							
Note : Let	ters in the	tal	hle	ind	icat	e n	rod	uct	thi	ckr	1000		X	SR	on	lv.											

		Temp	erature char	acteristics		
Temp.char. Code	Appli stan		Temperature range(°C)	Ref. Temp. (°C)	Capacitance change[%]	Capacitance tolerance(%)
D.	JIS	В	-25~+85	20	±10	1.40(14)
BJ	EIA	X5R	$-55 \sim +85$	25	±15	±10(K) ±20(M)
B7	EIA	X7R	$-55 \sim +125$	25	±15	-20 (IVI)
F	JIS	F	$-25 \sim +85$	20	+30/-80	+80 -20 ^(Z)
г	EIA	Y5V	$-30 \sim +85$	25	+22/-82	-20 ^(Z)

Note : Letters in the table indicate product thickness. K5R only

REPRESENTATIVE PART NUMBERS

Low Profile Multilayer Ceramic Capacitors

107TYPE

[Temperature Characteristic BJ:B/X5R] •0.8mm thickness(A)

Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK107 BJ474 A	UMK107ABJ474 A	X5R	0.47	±10, ±20	10	0.8+0.15/-0.05	R	150%	D	
	UMK107 BJ105 A		X5R	1	±10, ±20	10	0.8±0.1	R	150%		
35V	GMK107 BJ105 A		B/X5R	1	±10, ±20	5	0.8±0.1	R	150%		
25V	TMK107 BJ224 A		B/X5R	0.22	±10, ±20	3.5	0.8±0.1	R/W	200%		
	TMK107 BJ474 A		B/X5R	0.47	±10, ±20	3.5	0.8±0.1	R	150%		
	TMK107 BJ105 A		B/X5R	1	±10, ±20	5	0.8±0.1	R	150%		
	TMK107 BJ225 A	TMK107ABJ225 A	X5R	2.2	±10, ±20	10	0.8+0.15/-0.05	R	150%	D	
16V	EMK107 BJ224 A		B/X5R*1	0.22	±10, ±20	3.5	0.8±0.1	R/W	200%		
	EMK107 BJ474 A		B/X5R*1	0.47	±10, ±20	3.5	0.8±0.1	R	200%		
	EMK107 BJ105 A		B/X5R*1	1	±10, ±20	5	0.8±0.1	R	150%		
	EMK107 BJ225 A		B/X5R	2.2	±10, ±20	10	0.8±0.1	R	150%		
	EMK107 BJ475 A	EMK107ABJ475 A	X5R	4.7	±10, ±20	10	0.8+0.15/-0.05	R	150%	D	
10V	LMK107 BJ224 A		B/X5R*1	0.22	±10, ±20	3.5	0.8±0.1	R/W	200%		
	LMK107 BJ474 A		B/X5R*1	0.47	±10, ±20	3.5	0.8±0.1	R	200%		
	LMK107 BJ105 A		B/X5R*1	1	±10, ±20	5	0.8±0.1	R	200%		
	LMK107 BJ225 A		B/X5R	2.2	±10, ±20	10	0.8±0.1	R	150%		
	LMK107 BJ475 A		X5R	4.7	±10, ±20	10	0.8±0.1	R	150%		
	LMK107 BJ106MA	LMK107BBJ106MA	X5R	10	±20	10	0.8+0.2/-0	R	150%	D	Special code : L
6.3V	JMK107 BJ225 A		B/X5R	2.2	±10, ±20	10	0.8±0.1	R	150%		
	JMK107 BJ475 A		X5R	4.7	±10, ±20	10	0.8±0.1	R	150%		
	JMK107 BJ106MA	JMK107ABJ106MA	X5R	10	±20	10	0.8+0.15/-0.05	R	150%		
4V	AMK107 BJ106MA		X5R	10	±20	10	0.8±0.1	R	150%		
	AMK107 BJ226MA	AMK107BBJ226MA	X5R	22	±20	10	0.8+0.2/-0	R	150%		

·0.45mm thickness(K)

Rated			Tama	Conneitence	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
25V	TMK107 BJ105 K		X5R	1	±10, ±20	10	0.45±0.05	R	150%		
16V	EMK107 BJ105 K		X5R	1	±10, ±20	10	0.45±0.05	R	150%		
10V	LMK107 BJ105 K		B/X5R	1	±10, ±20	10	0.45±0.05	R	150%		
	LMK107 BJ225 K		X5R	2.2	±10, ±20	10	0.45±0.05	R	150%		
	LMK107 BJ475MK	LMK107BBJ475MK	X5R	4.7	±20	10	0.45±0.05	R	150%	D	Special code : L
6.3V	JMK107 BJ105 K		B/X5R	1	±10, ±20	10	0.45±0.05	R	150%		
	JMK107 BJ225 K		X5R	2.2	±10, ±20	10	0.45±0.05	R	150%		
	JMK107 BJ475MK		X5R	4.7	±20	10	0.45±0.05	R	150%		

Capacitance tolerance code is applied to
organization of part number.
*1 We may provide X7R for some itemes according to the individual specification.

[Temperature Characteristic B7 : X7R]

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
50V	UMK107 B7224 A		X7R	0.22	±10, ±20	10	0.8±0.1	R	150%	R	
	UMK107 B7474 A		X7R	0.47	±10, ±20	10	0.8±0.1	R	150%	R	
25V	TMK107 B7474 A		X7R	0.47	±10, ±20	10	0.8±0.1	R	150%	R	
	TMK107 B7105 A		X7R	1	±10, ±20	10	0.8±0.1	R	150%		
16V	EMK107 B7224 A		X7R	0.22	±10, ±20	3.5	0.8±0.1	R/W	150%		
	EMK107 B7474 A		X7R	0.47	±10, ±20	3.5	0.8±0.1	R	150%		
	EMK107 B7105 A		X7R	1	±10, ±20	5	0.8±0.1	R	150%		
10V	LMK107 B7224 A		X7R	0.22	±10, ±20	3.5	0.8±0.1	R/W	200%		
	LMK107 B7474 A		X7R	0.47	±10, ±20	3.5	0.8±0.1	R	200%		
	LMK107 B7105 A		X7R	1	±10, ±20	5	0.8±0.1	R	150%		
	LMK107 B7225 A		X7R	2.2	±10, ±20	10	0.8±0.1	R	150%		
6.3V	JMK107 B7224 A		X7R	0.22	±10, ±20	3.5	0.8±0.1	R/W	200%		
	JMK107 B7474 A		X7R	0.47	±10, ±20	3.5	0.8±0.1	R	200%		
	JMK107 B7105 A		X7R	1	±10, ±20	5	0.8±0.1	R	150%		

Capacitance tolerance code is applied to $\hfill\square$ of part number.

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

REPRESENTATIVE PART NUMBERS

[Temperature Characteristic F:Y5V]

Rated			Tomp	Capacitanaa	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK107 F104ZA		F/Y5V	0.1	+80/-20	7	0.8±0.1	R/W	200%		
25V	TMK107 F474ZA		F/Y5V	0.47	+80/-20	7	0.8±0.1	R/W	200%		
16V	EMK107 F224ZA		F/Y5V	0.22	+80/-20	7	0.8±0.1	R/W	200%		
	EMK107 F474ZA		F/Y5V	0.47	+80/-20	7	0.8±0.1	R/W	200%		
	EMK107 F105ZA		F/Y5V	1	+80/-20	16	0.8±0.1	R	200%		
	EMK107 F225ZA		F/Y5V	2.2	+80/-20	16	0.8±0.1	R	200%		
10V	LMK107 F105ZA		F/Y5V	1	+80/-20	16	0.8±0.1	R	200%		
	LMK107 F225ZA		F/Y5V	2.2	+80/-20	16	0.8±0.1	R	200%		

212TYPE

[Temperature Characteristic BJ : B/X5R]

•1.25mm	thickness(G)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness [mm]	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
50V	UMK212 BJ104 G		B/X5R*1	0.1	±10, ±20	3.5	1.25±0.1	R/W	200%		
	UMK212 BJ224 G		B/X5R*1	0.22	±10, ±20	3.5	1.25±0.1	R/W	150%		
	UMK212 BJ474 G		B/X5R*1	0.47	±10, ±20	3.5	1.25±0.1	R/W	150%		
	UMK212 BJ105 G		B/X5R	1	±10, ±20	5	1.25±0.1	R/W	150%		
25V	TMK212 BJ225 G		B/X5R	2.2	±10, ±20	5	1.25±0.1	R	150%		
	TMK212 BJ475 G	TMK212ABJ475 G	X5R	4.7	±10, ±20	10	1.25+0.15/-0.05	R	150%		
16V	EMK212 BJ225 G		B/X5R*1	2.2	±10, ±20	5	1.25±0.1	R	200%		
	EMK212 BJ475 G	EMK212ABJ475 G	B/X5R*1	4.7	±10, ±20	5	1.25+0.15/-0.05	R	150%		
	EMK212 BJ106 G	EMK212ABJ106 G	X5R	10	±10, ±20	10	1.25+0.15/-0.05	R	150%		
10V	LMK212 BJ225 G		B/X5R*1	2.2	±10, ±20	5	1.25±0.1	R	200%		
	LMK212 BJ475 G	LMK212ABJ475 G	B/X5R*1	4.7	±10, ±20	5	1.25+0.15/-0.05	R	200%		
	LMK212 BJ106 G	LMK212ABJ106 G	X5R	10	±10, ±20	10	1.25+0.15/-0.05	R	200%		
	LMK212 BJ226MG	LMK212BBJ226MG	X5R	22	±20	10	1.25+0.2/-0	R	150%		
6.3V	JMK212 BJ475 G	JMK212ABJ475 G	B/X5R	4.7	±10, ±20	5	1.25+0.15/-0.05	R	200%		
	JMK212 BJ106 G	JMK212ABJ106 G	X5R*1	10	±10, ±20	10	1.25+0.15/-0.05	R	200%		
	JMK212 BJ226MG	JMK212ABJ226MG	X5R	22	±20	10	1.25+0.15/-0.05	R	150%		
	JMK212 BJ476MG	JMK212BBJ476MG	X5R	47	±20	10	1.25+0.2/-0	R	150%		

·0.85mm thickness(D)

Rated			Tomp	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK212 BJ105 D	UMK212ABJ105 D	X5R	1	±10, ±20	10	0.85±0.1	R	150%	D	
25V	TMK212 BJ474 D		B/X5R	0.47	±10, ±20	3.5	0.85±0.1	R	200%		
	TMK212 BJ105 D		B/X5R	1	±10, ±20	5	0.85±0.1	R	200%		
	TMK212 BJ225 D	TMK212ABJ225 D	B/X5R	2.2	±10, ±20	5	0.85±0.1	R	150%		
	TMK212 BJ475 D	TMK212BBJ475 D	X5R	4.7	±10, ±20	10	0.85±0.1	R	150%	D	
16V	EMK212 BJ105 D		B/X5R*1	1	±10, ±20	5	0.85±0.1	R	200%		
	EMK212 BJ225 D	EMK212ABJ225 D	B/X5R*1	2.2	±10, ±20	5	0.85±0.1	R	200%		
	EMK212 BJ475 D		B/X5R	4.7	±10, ±20	10	0.85±0.1	R	150%		
	EMK212 BJ106 D	EMK212ABJ106 D	X5R	10	±10, ±20	10	0.85±0.1	R	150%	D	
10V	LMK212 BJ105 D		B/X5R*1	1	±10, ±20	3.5	0.85±0.1	R	200%		
	LMK212 BJ225 D		B/X5R*1	2.2	±10, ±20	5	0.85±0.1	R	200%		
	LMK212 BJ475 D		B/X5R	4.7	±10, ±20	10	0.85±0.1	R	200%		
	LMK212 BJ106 D	LMK212ABJ106 D	X5R	10	±10, ±20	10	0.85±0.1	R	150%		
6.3V	JMK212 BJ475 D		X5R	4.7	±10, ±20	10	0.85±0.1	R	200%		
	JMK212 BJ106 D	JMK212ABJ106 D	X5R	10	±10, ±20	10	0.85±0.1	R	200%		
	JMK212 BJ226MD	JMK212ABJ226MD	X5R	22	±20	10	0.85±0.1	R	150%		

•0.45mm thickness(K)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness [mm]	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
10V	LMK212 BJ475 K	LMK212ABJ475	X5R	4.7	±10, ±20	10	0.45 ± 0.05	R	150%		
6.3V	JMK212 BJ475 K	JMK212ABJ475 K	X5R	4.7	±10, ±20	10	0.45±0.05	R	150%		
	JMK212 BJ106MK	JMK212ABJ106MK	X5R	10	±20	10	$0.45 {\pm} 0.05$	R	150%		

Capacitance tolerance code is applied to
organized of part number.
*1 We may provide X7R for some itemes according to the individual specification.

[Temperature Characteristic B7 : X7R] ·1.25mm thickness(G)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
50V	UMK212 B7104 G		X7R	0.1	±10, ±20	3.5	1.25±0.1	R/W	200%	(, , , , , , ,	
	UMK212 B7224 G		X7R	0.22	±10, ±20	3.5	1.25±0.1	R/W	150%		
	UMK212 B7474 G		X7R	0.47	±10, ±20	3.5	1.25±0.1	R/W	150%		
	UMK212 B7105 G		X7R	1	±10, ±20	10	1.25±0.1	R/W	150%		
35V	GMK212 B7105 G		X7R	1	±10, ±20	3.5	1.25±0.1	R/W	150%		
25V	TMK212 B7105 G		X7R	1	±10, ±20	3.5	1.25±0.1	R/W	150%		
	TMK212 B7225 G		X7R	2.2	±10, ±20	10	1.25±0.1	R	150%	R	
	TMK212 B7475 G	TMK212AB7475 G	X7R	4.7	±10, ±20	10	1.25+0.15/-0.05	R	150%	D	
16V	EMK212 B7105 G		X7R	1	±10, ±20	3.5	1.25±0.1	R/W	200%		
	EMK212 B7225 G		X7R	2.2	±10, ±20	10	1.25±0.1	R	150%		
	EMK212 B7475 G		X7R	4.7	±10, ±20	10	1.25±0.1	R	150%		
10V	LMK212 B7105 G		X7R	1	±10, ±20	3.5	1.25±0.1	R/W	200%		
	LMK212 B7225 G		X7R	2.2	±10, ±20	5	1.25±0.1	R	200%		
	LMK212 B7475 G		X7R	4.7	±10, ±20	10	1.25±0.1	R	150%		
	LMK212 B7106MG	LMK212AB7106MG	X7R	10	±20	10	1.25+0.15/-0.05	R	150%	D	
6.3V	JMK212 B7106 G	JMK212AB7106 G	X7R	10	±10, ±20	10	1.25+0.15/-0.05	R	150%		

•0.85mm thickness(D)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
16V	EMK212 B7474 D		X7R	0.47	±10, ±20	3.5	0.85±0.1	R/W	200%		
	EMK212 B7105 D		X7R	1	±10, ±20	5	0.85±0.1	R	200%		
	EMK212 B7225 D	EMK212AB7225 D	X7R	2.2	±10, ±20	5	0.85±0.1	R	150%		
10V	LMK212 B7105 D		X7R	1	±10, ±20	3.5	0.85±0.1	R	200%		
	LMK212 B7225 D	LMK212AB7225 D	X7R	2.2	±10, ±20	5	0.85±0.1	R	200%		
	LMK212 B7475 D	LMK212AB7475DD	X7R	4.7	±10, ±20	10	0.85±0.1	R	150%	R	

Capacitance tolerance code is applied to \square of part number.

[Temperature Characteristic F:Y5V] ·1.25mm thickness(G)

Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[µF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated	code (P/N 1)	Note
-					[%]			w:wave	voltage	(P/N I)	
50V	UMK212 F474ZG		F/Y5V	0.47	+80/-20	7	1.25±0.1	R/W	200%		
	UMK212 F105ZG		F/Y5V	1	+80/-20	7	1.25±0.1	R/W	200%		
16V	EMK212 F225ZG		F/Y5V	2.2	+80/-20	7	1.25±0.1	R/W	200%		
10V	LMK212 F475ZG		F/Y5V	4.7	+80/-20	9	1.25±0.1	R	200%		
	LMK212 F106ZG		F/Y5V	10	+80/-20	16	1.25±0.1	R	200%		
6.3V	JMK212 F106ZG		F/Y5V	10	+80/-20	16	1.25±0.1	R	200%		
•0.85mm	thickness(D)										
Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance	[%]	[mm]	R:Reflow	% Rated	code	Note
vonage			char.	(μι)	[%]	(70)	(IIIII)	W:Wave	voltage	(P/N 1)	
50V	UMK212 F224ZD		F/Y5V	0.22	+80/-20	7	0.85±0.1	R/W	200%		
10V	LMK212 F225ZD		F/Y5V	2.2	+80/-20	9	0.85±0.1	R	200%		
6.3V	JMK212 F475ZD		F/Y5V	4.7	+80/-20	16	0.85±0.1	R	200%		

316Type

[Temperature Characteristic BJ : B/X5R] ·1.6mm thickness(L)

Rated			Tomp	Capacitanas	Capacitance	ton 5	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	tolerance [%]	tanδ [%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK316 BJ105 L		B/X5R*1	1	±10, ±20	3.5	1.6±0.2	R	200%		
	UMK316 BJ475 L		X5R	4.7	±10, ±20	10	1.6±0.2	R	150%		
25V	TMK316 BJ225 L		B/X5R*1	2.2	±10, ±20	3.5	1.6±0.2	R	200%		
[TMK316 BJ475 L		B/X5R	4.7	±10, ±20	5	1.6±0.2	R	150%		
[TMK316 BJ106 L		X5R*1	10	±10, ±20	5	1.6±0.2	R	150%		
16V	EMK316 BJ225 L		B/X5R*1	2.2	±10, ±20	3.5	1.6±0.2	R/W	200%		
ĺ	EMK316 BJ475 L		B/X5R	4.7	±10, ±20	5	1.6±0.2	R	200%		
	EMK316 BJ106 L		B/X5R*1	10	±10, ±20	5	1.6±0.2	R	150%		
	EMK316 BJ226ML	EMK316ABJ226ML	B/X5R	22	±20	10	1.6±0.2	R	150%		
10V	LMK316 BJ106 L		B/X5R*1	10	±10, ±20	5	1.6±0.2	R	200%		
(LMK316 BJ226ML	LMK316ABJ226ML	B/X5R	22	±20	10	1.6±0.2	R	150%		
ĺ	LMK316 BJ476ML	LMK316ABJ476ML	X5R	47	±20	10	1.6±0.2	R	150%		
6.3V	JMK316 BJ106 L		B/X5R*1	10	±10, ±20	5	1.6±0.2	R	200%		
	JMK316 BJ226 L	JMK316ABJ226	B/X5R	22	±10, ±20	10	1.6±0.2	R	200%		
	JMK316 BJ476ML	JMK316ABJ476ML	X5R	47	±20	10	1.6±0.2	R	200%		
	JMK316 BJ107ML	JMK316ABJ107ML	X5R	100	±20	10	1.6±0.2	R	150%		
4V	AMK316 BJ107ML	AMK316ABJ107ML	X5R	100	±20	10	1.6±0.2	R	150%		

Capacitance tolerance code is applied to \Box of part number. ^1 We may provide X7R for some itemes according to the individual specification.

REPRESENTATIVE PART NUMBERS

•0.85mm thickness(D)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanð [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
50V	UMK316 BJ105 D		B/X5R	1	±10, ±20	3.5	0.85±0.1	R	150%		
	UMK316 BJ225 D		B/X5R	2.2	±10, ±20	3.5	0.85±0.1	R	150%		
	UMK316 BJ475 D	UMK316ABJ475 D	X5R	4.7	±10, ±20	10	0.85±0.1	R	150%	D	
25V	TMK316 BJ105 D		B/X5R	1	±10, ±20	3.5	0.85±0.1	R	200%		
	TMK316 BJ225 D		B/X5R	2.2	±10, ±20	3.5	0.85±0.1	R	150%		
	TMK316 BJ475 D		X5R	4.7	±10, ±20	5	0.85±0.1	R	150%		
	TMK316 BJ106 D	TMK316ABJ106 D	X5R	10	±10, ±20	10	0.85±0.1	R	150%	D	
16V	EMK316 BJ225 D		B/X5R	2.2	±10, ±20	3.5	0.85±0.1	R	200%		
	EMK316 BJ475 D		B/X5R	4.7	±10, ±20	5	0.85±0.1	R	200%		
	EMK316 BJ106 D		X5R	10	±10, ±20	10	0.85±0.1	R	150%		
	EMK316 BJ226MD	EMK316ABJ226MD	X5R	22	±20	10	0.85±0.1	R	150%	D	
10V	LMK316 BJ475 D		B/X5R	4.7	±10, ±20	5	0.85±0.1	R	200%		
	LMK316 BJ106 D		B/X5R	10	±10, ±20	10	0.85±0.1	R	200%		
	LMK316 BJ226MD	LMK316ABJ226MD	X5R	22	±20	10	0.85±0.1	R	150%		
6.3V	JMK316 BJ106 D		B/X5R	10	±10, ±20	10	0.85±0.1	R	200%		
	JMK316 BJ226MD	JMK316ABJ226MD	X5R	22	±20	10	0.85±0.1	R	150%		
	JMK316 BJ476MD	JMK316ABJ476MD	X5R	47	±20	10	0.85±0.1	R	150%		

Capacitance tolerance code is applied to \Box of part number.

[Temperature Characteristic B7 : X7R]

Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	(μF)	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK316 B7224 L		X7R	0.22	±10, ±20	2.5	1.6±0.2	R/W	200%		
	UMK316 B7474 L		X7R	0.47	±10, ±20	3.5	1.6±0.2	R/W	200%		
	UMK316 B7105 L		X7R	1	±10, ±20	3.5	1.6±0.2	R	200%		
	UMK316 B7225 L		X7R	2.2	±10, ±20	10	1.6±0.2	R	150%		
	UMK316 B7475 L	UMK316AB7475 L	X7R	4.7	±10, ±20	10	1.6±0.2	R	150%	D	
25V	TMK316 B7105 L		X7R	1	±10, ±20	3.5	1.6±0.2	R/W	200%		
	TMK316 B7225 L		X7R	2.2	±10, ±20	3.5	1.6±0.2	R	200%		
	TMK316 B7475 L	TMK316AB7475 L	X7R	4.7	±10, ±20	10	1.6±0.2	R	200%	D	
	TMK316 B7106 L	TMK316AB7106 L	X7R	10	±10, ±20	10	1.6±0.2	R	150%	D	
16V	EMK316 B7225 L		X7R	2.2	±10, ±20	3.5	1.6±0.2	R/W	200%		
	EMK316 B7106 L	EMK316AB7106 L	X7R	10	±10, ±20	10	1.6±0.2	R	200%	D	
10V	LMK316 B7225 L		X7R	2.2	±10, ±20	3.5	1.6±0.2	R/W	200%		
	LMK316 B7475 L		X7R	4.7	±10, ±20	5	1.6±0.2	R	200%		
	LMK316 B7106 L	LMK316AB7106	X7R	10	±10, ±20	10	1.6±0.2	R	200%	D	
	LMK316 B7226ML	LMK316AB7226ML	X7R	22	±20	10	1.6±0.2	R	150%	R	
6.3V	JMK316 B7106 L		X7R	10	±10, ±20	5	1.6±0.2	R	200%		

Capacitance tolerance code is applied to $\hfill\square$ of part number.

[Temperature Characteristic F : F/Y5V]

JMK316 F106ZD

	nickness(L)										
Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
35V	GMK316 F106ZL		F/Y5V	10	+80/-20	9	1.6±0.2	R	200%		
25V	TMK316 F106ZL		F/Y5V	10	+80/-20	9	1.6±0.2	R	200%		
16V	EMK316 F106ZL		F/Y5V	10	+80/-20	9	1.6±0.2	R	200%		
10V	LMK316 F226ZL		F/Y5V	22	+80/-20	16	1.6±0.2	R	200%		
•1.25mm	thickness(G)										
Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	(µF)	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK316 F225ZG		F/Y5V	2.2	+80/-20	7	1.25±0.1	R/W	200%		
35V	GMK316 F475ZG		F/Y5V	4.7	+80/-20	7	1.25±0.1	R	200%		
•0.85mm	thickness(D)										
Rated			Tomp	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
10V	LMK316 F475ZD		F/Y5V	4.7	+80/-20	9	0.85±0.1	R	200%		

+80/-20

16

0.85±0.1

R

200%

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

F/Y5V

10

6.3V

REPRESENTATIVE PART NUMBERS

325Type

Temperature Characteristic BJ : B/X5R •2.5mm thickness(M)

Rated			T	Constitution	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
50V	UMK325 BJ475MM		X5R	4.7	±20	5	2.5±0.2	R	150%		
	UMK325 BJ106MM		X5R	10	±20	5	2.5±0.2	R	150%		
25V	TMK325 BJ106MM		B/X5R*1	10	±20	3.5	2.5±0.2	R	150%		
16V	EMK325 BJ226MM		B/X5R	22	±20	5	2.5±0.2	R	150%		
	EMK325 BJ476MM		X5R	47	±20	10	2.5±0.2	R	150%		
10V	LMK325 BJ226MM		B/X5R	22	±20	5	2.5±0.2	R	200%		
	LMK325 BJ476MM		X5R	47	±20	10	2.5±0.2	R	150%		
	LMK325 BJ107MM	LMK325ABJ107MM	X5R	100	±20	10	2.5±0.3	R	150%		
6.3V	JMK325 BJ476MM		X5R	47	±20	10	2.5±0.2	R	150%		
	JMK325 BJ107MM	JMK325ABJ107MM	X5R	100	±20	10	2.5±0.3	R	150%		

·1.9mm thickness(Y, N)

•1.90000	nickness(Y, N)			1				1			
Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance	[%]	(mm)	R:Reflow	% Rated	code	Note
Ű					[%]			W:Wave	voltage	(P/N 1)	
35V	GMK325 BJ225MN		B/X5R	2.2	±20	3.5	1.9±0.2	R	200%		
	GMK325 BJ475MN		X5R	4.7	±20	10	1.9±0.2	R	150%		
	GMK325 BJ106MN		B/X5R	10	±20	5	1.9±0.2	R	150%		
25V	TMK325 BJ335MN		B/X5R*1	3.3	±20	3.5	1.9±0.2	R	200%		
	TMK325 BJ475MN		B/X5R*1	4.7	±20	3.5	1.9±0.2	R	200%		
	TMK325 BJ106MN		B/X5R	10	±20	5	1.9±0.2	R	200%		
16V	EMK325 BJ475MN		B/X5R*1	4.7	±20	3.5	1.9±0.2	R	200%		
	EMK325 BJ106MN		B/X5R	10	±20	3.5	1.9±0.2	R	200%		
10V	LMK325 BJ226MY		B/X5R	22	±20	5	1.9+0.1/-0.2	R	150%		
	LMK325 BJ106MN		B/X5R*1	10	±20	3.5	1.9±0.2	R	200%		
6.3V	JMK325 BJ226MY		B/X5R	22	±20	5	1.9+0.1/-0.2	R	200%		
	JMK325 BJ107MY		X5R	100	±20	10	1.9+0.1/-0.2	R	150%		
	JMK325 BJ476MN		X5R	47	±20	10	1.9±0.2	R	150%		

0.85mm thickness(D)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
25V	TMK325 BJ106MD		B/X5R	10	±20	5	0.85±0.1	R	150%		
16V	EMK325 BJ106MD		B/X5R	10	±20	5	0.85±0.1	R	150%		
	EMK325 BJ226MD		B/X5R	22	±20	10	0.85±0.1	R	150%		
10V	LMK325 BJ335MD		B/X5R	3.3	±20	3.5	0.85±0.1	R	200%		
	LMK325 BJ475MD		B/X5R	4.7	±20	5	0.85±0.1	R	200%		
	LMK325 BJ106MD		B/X5R	10	±20	5	0.85±0.1	R	150%		

*1 We may provide X7R for some itemes according to the individual specification.

[Temperature Characteristic B7 : X7R] •2.5mm thickness(M)

Rated voltage	Part number 1	Part number 2	Temp. char.	Capacitance [µF]	Capacitance tolerance [%]	tanδ [%]	Thickness (mm)	Soldering R:Reflow W:Wave	HALT % Rated voltage	Internal code (P/N 1)	Note
50V	UMK325 B7475MM		X7R	4.7	±20	5	2.5±0.2	R	150%		
25V	TMK325 B7226MM		X7R	22	±20	10	2.5±0.2	R	150%	R	
16V	EMK325 B7226MM		X7R	22	±20	10	2.5±0.2	R	150%	R	
10V	LMK325 B7476MM		X7R	47	±20	10	2.5±0.2	R	150%	R	
6.3V	JMK325 B7476MM		X7R	47	±20	10	2.5±0.2	R	200%	R	

·1.9mm thickness(Y, N)

Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
25V	TMK325 B7335MN		X7R	3.3	±20	3.5	1.9±0.2	R	200%		
	TMK325 B7475MN		X7R	4.7	±20	3.5	1.9±0.2	R	150%		
16V	EMK325 B7475MN		X7R	4.7	±20	3.5	1.9±0.2	R	200%		
	EMK325 B7106MN		X7R	10	±20	3.5	1.9±0.2	R	150%		
10V	LMK325 B7106MN		X7R	10	±20	3.5	1.9±0.2	R	200%		

[Temperature Characteristic F : F/Y5V]

Rated			Temp.	Capacitance	Capacitance	tanδ	Thickness	Soldering	HALT	Internal	
voltage	Part number 1	Part number 2	char.	[μF]	tolerance [%]	[%]	(mm)	R:Reflow W:Wave	% Rated voltage	code (P/N 1)	Note
									0		
16V	EMK325 F226ZN		F/Y5V	22	+80/-20	16	1.9±0.2	R	200%		
10V	LMK325 F226ZN		F/Y5V	22	+80/-20	16	1.9±0.2	R	200%		
6.3V	JMK325 F476ZN		F/Y5V	47	+80/-20	16	1.9±0.2	R	200%		

ELECTRICAL CHARACTERISTICS

Example of Impedance ESR vs. Frequency characteristics

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

0.1

0.00 0.0001

10 100 1000 Frequency (kHz)

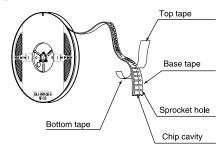
10000 100000

CAPACITORS

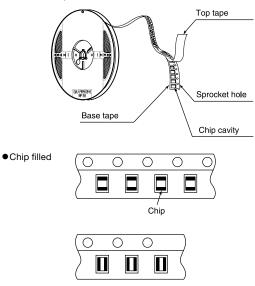
PACKAGING

1 Minimum Quantity

Taped package

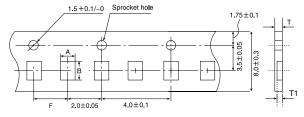

	Thickness		Standard q	uantity [pcs]	
Туре	mm	code	Paper tape	Embossed tape	
MK042	0.2	С	—	40000	
MK063	0.3	P,T	15000		
	0.3	Р]	
□2K096	0.45	К	10000		
WK105	0.3	Р	10000		
	0.5	V			
	0.2	С	20000	1 -	
MK105	0.3	Р	15000	1	
Γ	0.5	V, W	40000	1	
VK105	0.5	W	10000		
	0.45	К	4000	1	
	0.5	V	_	4000	
	0.8	Α			
	0.5	V	4000		
2K110	0.6	В		_	
Γ	0.8	А	4000		
	0.45	К			
□MK212 □WK212	0.85	D			
	1.25	G	_	3000	
_4K212	0.85	D			
2K212	0.85	D	4000	_	
	0.85	D	1		
	1.15	F			
□MK316 -	1.25	G	1 _	3000	
	1.6	L	1		
	0.85	D		1	
	1.15	F	1	2000	
MK325	1.9	N	1 —		
F	2.0max	Y	1		
	2.5	М	1	500(T), 1000(P)	
_MK432	2.5	М	_	500	

_

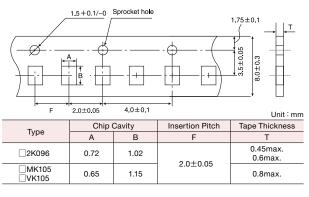

②Taping material

%No bottom tape for pressed carrier tape

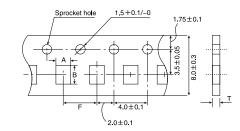
Paper tape


Embossed tape

③Representative taping dimensions

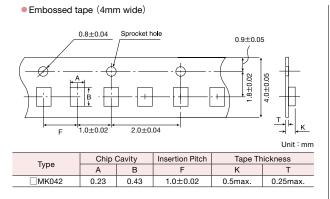

Paper Tape (8mm wide)

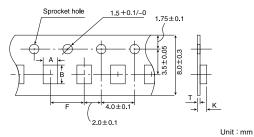
• Pressed carrier tape (2mm pitch)



					Unit : mm
Turne	Chip Cavity		Insertion Pitch	Tape Thickness	
Туре	A	В	F	Т	T1
MK063	0.37	0.67	2.0±0.05	0.45max.	0.42max.
WK105	0.65	1.15	2.0±0.05	0.45max.	0.42max.

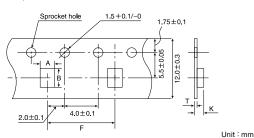
• Punched carrier tape (2mm pitch)


• Punched carrier tape (4mm pitch)

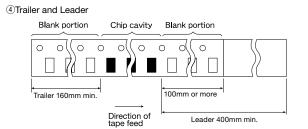

Turne	Chip (Cavity	Insertion Pitch	Tape Thickness
Туре	A	В	F	Т
MK107	1.0	1.8		1.1max.
2K110	1.15	1.55		1.0max.
MK212 WK212	1.05	0.4	4.0±0.1	
□4K212 □2K212	1.65	2.4		1.1max.
_MK316	2.0	3.6		

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

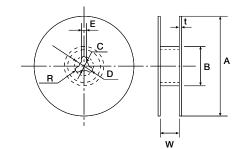
micc_pack-P1 Downloaded from Datasheet.su Unit : mm



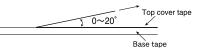
Embossed tape (8mm wide)



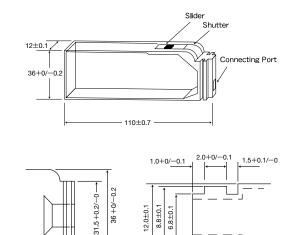
Tape Thickness Chip Cavity Insertion Pitch Туре А В F κ WK107 1.0 1.8 1.3max $0.25 {\pm} 0.1$ _MK212 1.65 2.4 4.0±0.1 MK316 3 4max 0.6max 2.0 3.6 _MK325 2.8 3.6


Embossed tape (12mm wide)

					Onternan
Tures	Chip (Cavity	Insertion Pitch	Tape Th	ickness
Туре	A	В	F	К	Т
MK432	3.7	4.9	8.0±0.1	4.0max.	0.6max.


5Reel size

		vv
		Unit : mm
А	В	С
φ178±2.0	φ50min.	φ13.0±0.2
D	E	R
φ21.0±0.8	2.0±0.5	1.0
	t	W
4mm wide tape	1.5max.	5±1.0
8mm wide tape	2.5max.	10±1.5
12mm wide tape	2.5max.	14±1.5


6 Top Tape Strength

The top tape requires a peel-off force of 0.1 to 0.7N in the direction of the arrow as illustrated below.

⑦Bulk Cassette

The exchange of individual specification is necessary. Please contact Taiyo Yuden sales channels.

Unit : mm

Г

Super Low Distortion Multilayer Ceramic Capacitors and Medium-High Voltage Multilayer Ceramic Capacitors are noted separately.

Multilayer Ceramic Capacitors

1.Operatin	ng Temperature Range						
	Temperature Compensating	Standard		o +125℃			
	(Class 1)	High Frequency Type	-55 [0 + 125 C			
				Specification	Temperature Range		
			_	В	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C -55 to +105°C -55 to +125°C -25 to +85°C		
Specified			BJ X5R -55 to +85°C				
Value			B7	X5R -55 to +85°C 7 X7R -55 to +125°C			
	High Permittivity (Class 2)		C6	X6S	-25 to +85°C -55 to +85°C -55 to +125°C -55 to +105°C		
			C7	X7S	−55 to +125℃		
			F	F	−25 to +85°C		
				Y5V	−30 to +85°C		

2. Storage Conditions

	Temperature Compensating	Standard	-55 t	−55 to +125°C					
	(Class 1)	High Frequency Type							
				Specification	Temperature Range				
	High Permittivity (Class 2)		BJ	В	−25 to +85°C				
Specified				X5R	−55 to +85℃				
Value			B7	X7R	−55 to +125℃				
			C6	X6S	−55 to +105°C				
			C7	X7S	−55 to +125℃				
				F	−25 to +85°C				
			F	Y5V	−30 to +85°C				

3. Rated V	3. Rated Voltage				
Specified Class	Temperature Compensating (Class 1)	Standard	50VDC, 25VDC, 16VDC		
		High Frequency Type	50VDC, 16VDC		
	High Permittivity (Class 2)		50VDC, 35VDC, 25VDC, 16VDC, 10VDC, 6.3VDC, 4VDC		
	-				

4. Withstanding Voltage (Between terminals)

0	Temperature Comp	ensating Standa	rd	
Specified Value	(Class 1)	High Fr	equency Type	No breakdown or damage
Value	High Permittivity(C	lass 2)		
Test Met	hods and Remarks			
		Class 1	Class 2	
Ap	plied voltage	Rated voltage×3	Rated voltage×	2.5
	Duration	1 to	5 sec.	
Charge	/discharge current	50m	A max.	

5. Insulation Resistance

-	Temperature Compensating Standard		0000 MΩ min.		
Specified	(Class 1)	High Frequency Type			
Value	High Permittivity (Class 2) No		C≦0.047μF:10000 MΩ min. C>0.047μF:500MΩ+μF		

[Test Methods and Remarks] Applied voltage: Rated voltage Duration: 60±5 sec.

Charge/discharge current: 50mA max.

6. Capacitance (Tolerance)

Specified (Class 1)	Standard	$\begin{tabular}{ c c c c c } \hline C & 0.5pF \leq C \leq 5pF : \pm 0.25pF \\ \hline 0.5pF < C \leq 10pF : \pm 0.5pF \\ \hline C > 10pF : \pm 5\% \end{tabular} \end{tabular}$
alue	High Frequency Type	$\begin{tabular}{ c c c c } \hline CH & 0.5pF \leq C \leq 2pF : \pm 0.1pF \\ \hline C > 2pF : \pm 5\% \end{tabular}$
High Permittivity (Class 2)		BJ, B7, C6,C7 : ±10% or ±20%, F : −20% / +80%
st Methods and Remarks		

	Cla	ss 1	Class 2		
	Standard	High Frequency Type	C≦10µF	C>10µF	
Preconditioning	No	one	Thermal treatment (at 150°C for 1hr) Note 2		
Measuring frequency	1MHz	±10%	1kHz±10%	120±10Hz	
Measuring voltage Note 1	0.5 to	5Vrms	1±0.2Vrms	0.5±0.1Vrms	
Bias application		No	ne		

7. Q or Dissipation Factor

7. 00 01 013											
<u> </u>	Temperature Com	pensating	Standard		C<30 pF : Q	≥400+20C、C≥30 pF÷C	Q≧1000 (C:Nominal cap	pacitance)			
Specified Value	(Class 1)		High Freque	псу Туре							
ł	High Permittivity(Class 2) Note 1				BJ, B7, C6,C	BJ, B7, C6,C7 : 2.5% max., F : 7% max.					
[Test Methods and Remarks]											
		Class 1			Class 2						
		Star	ndard	d High Frequency Type		C≦10µF	C>10µF				
Precondi	tioning		No	ne		Thermal treatment (at					
Measurin	ng frequency	1MHz	1MHz±10% 1GHz		iHz	1kHz±10%	120±10Hz				
Measurin	ig voltage Note 1		0.5 to 5Vrms			1±0.2Vrms 0.5±0.1Vrms		High Frequency Type Measuring equipment: HP4291A			
Bias appl	lication	N				one		Measuring jig: HP16192A			

RELIABILITY DATA

3. Temper	ature Characteristic (Without v	oltage application)						
			Temp	perature Charac	cteristic [ppm/°C]	Tolerance]	
		Standard	C	:0 CH,	CJ, CK			
	Temperature Compensating		R	:-220 RH		H±60		
	(Class 1)				SJ, SK	J±120		
	Link Francisco Trans		: -470 TJ, T		K±250			
		High Frequency Type		: -750 UJ, U			-	
ecified				: +350 to -10				
Value				Specification	Capacitance ch	ange Reference t	emperature	Temperature Range
			ВЈ	В	±10%	20	°C	-25 to +85℃
				X5R	±15%	25	°C	−55 to +85°C
			B7	X7R	±15%	25	°C	−55 to +125℃
High Permittivity (Class 2)	High Permittivity (Class 2)		C6	X6S	±22%	25	°C	−55 to +105°C
				X7S	±22%	25	°C	-55 to +125°C
			F	F	+30/-80%	20	°C	-25 to +85℃
				Y5V	+22/-82%	25	°C	−30 to +85°C

[Test Methods and Remarks] Class 1

Capacitance at 20°C and 85°C shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

$$\frac{(C_{85}-C_{20})}{C_{20}\times \bigtriangleup T}$$
 × 10⁶ (ppm/°C) $\bigtriangleup T=65$

Class 2

Capacitance at each step shall be measured in thermal equilibrium, and the temperature characteristic shall be calculated from the following equation.

Step	B、F	X5R、X7R、X6S、	X7S、 Y	Y5V	$\frac{(C-C_2)}{C_2} \times 100(\%)$
1	Minimum opera	ting temperature		02	
2	20°C	25°C		C Capacitance in Step 1 or Step 3	
3	Maximum opera	ting temperature		C ₂ : Capacitance in Step 2	

9. Deflection

J. Denecu								
	Temperature Compensating			No abnormality Within $\pm 5\%$ or ± 0.5 pF, whichever is larger.				
Specified Value	Specified (Class 1) Value		Appearance : Capacitance change :	No abnormality Within±0.5 pF				
	High Permittivity (Class 2)			No abnormality Within $\pm 12.5\%$ (BJ, B7, C6, C7), Within $\pm 30\%$ (F)				

[Test Methods and Remarks]

viuitilayer Ceramic Capacitors					20
	Board	Thickness	Warp	Duration	
042、063 Type		0.8mm	1mm	10 sec.	Board R-230
The other types	glass epoxy-resin substrate	1.6mm		TU Sec.	Warp
Array Type					$\begin{array}{c c} & & & \\ \hline \\ & & & \\ \hline \\ \hline$
	Board	Thickness	Warp	Duration	Capacitance measurement sh
096、110、212 Type	glass epoxy-resin substrate	1.6mm	1mm	10 sec.	(Unit: mm) be conducted with the board be

10. Body	10. Body Strength							
	Temperature Compensating	Standard	_					
Specified Value		High Frequency Type	No mechanical damage.					
value	High Permittivity (Class 2)		_					
	hods and Remarks							
	uency Type	R0.5						
Applied force: 5N Duration: 10 sec.								
$\begin{array}{c} \leftarrow A \rightarrow \\ 0.6A \\ \hline A \end{array}$								

11. Adhes	11. Adhesive Strength of Terminal Electrodes										
Creatified	Temperature Con	npensating S	•								
Specified Value	(Class 1)	F			No terminal separation or its indication.						
value	High Permittivity	(Class 2)									
	[Test Methods and Remarks] Multilayer Ceramic Capacitors				Array Type Hooked jig						
		Applied force	Duration			Applied force	Duration				
042、	063 Type	2N	30±5 sec.		096 Type	2N	30±5 sec.	R=05 Board			
105 Ty	/pe or more	5N	30±5 sec.		110、212 Type	5N	30 <u>1</u> 5 sec.				

12. Solde	2. Solderability						
Specified	Temperatur	e Compensating	Standard				
Value	(Class 1)			At least 95% of terminal electrode is covered by new solder.			
value	High Permittivity (Class 2)						
Test Met	Test Methods and Remarks						
		Solder type	Solder temperature	Duration			
Eutecti	c solder	H60A or H63A	230±5°C	4+1.000			
Lead-fr	ree solder	Sn-3.0Ag-0.5C	⊿ 245±3℃	4±1 sec.			

* This catalog contains the typical specification only due to the limitation of space. When you consider the purchase of our products, please check our specification. For details of each product (characteristics graph, reliability information, precautions for use, and so on), see our Web site (http://www.ty-top.com/) or CD catalogs.

13. Resis	tance to	Soldering						
	Temperature Compensating		Standard	Q: Insulatio	ance change: Wi Inition resistance: Inition	abnormality thin $\pm 2.5\%$ or ± 0.25 pF, which tial value tial value ween terminals): No abnormali	-	
Specified Value	(Class 1)	,	High Frequency Type	Q: Insulatio	ance change: Wi Inition resistance: Inition	abnormality thin ±2.5% tial value tial value ween terminals): No abnormali	ty	
	High Permittivity (Class 2) Note 1			Dissipat Insulatio	ance change: Wi Wi ion factor: Ini on resistance: Ini	abnormality thin ±7.5% (BJ, B7, C6, C7) thin ±20% (F) tial value ial value ween terminals): No abnormali	ty	
Test Met Class 1	hods and	Remarks			Class 2			
		042 063 Type	105 Type			042, 063 Type	105, 107, 212 Type	316 325 Type

	042, 063 Type	105 Type Array(096, 110 Type)		042、063 Type	105, 107, 212 Type Array(096, 110,212 Type)	316, 325 Type	
Preconditioning	١	lone	Preconditioning	Thermal	Thermal treatment (at 150°C for 1 hr) Note 2		
Preheating	150°C, 1 to 2 min.	80 to 100℃, 2 to 5 min. 150 to 200℃, 2 to 5 min.	Preheating	150℃, 1 to 2 min.	80 to 100℃, 2 to 5 min. 150 to 200℃, 2 to 5 min.	80 to 100℃, 5 to 10 min. 150 to 200℃, 5 to 10 min.	
Solder temp.	27	D±5℃	Solder temp.		270±5℃		
Duration	3±0).5 sec.	Duration		3±0.5 sec.		
Recovery	6 to 24 hrs (Stand	ard condition) Note 5	Recovery	24±2 hrs (Standard condition) Note 5			

14. Tempe	erature Cycle (Thermal Shock)			
	Temperature Compensating	Standard	Appearance: Capacitance change: Q: Insulation resistance: Withstanding voltage	No abnormality Within ±2.5% or ±0.25pF, whichever is larger. Initial value Initial value (between terminals): No abnormality
Specified Value	(Class 1)	High Frequency Type	Appearance: Capacitance change: Q: Insulation resistance: Withstanding voltage	No abnormality Within ±0.25pF Initial value Initial value (between terminals): No abnormality
	High Permittivity(Class 2) N	lote 1	Dissipation factor: Insulation resistance:	No abnormality Within $\pm 7.5\%$ (BJ, B7, C6, C7) Within $\pm 20\%$ (F) Initial value Initial value (between terminals): No abnormality
1-				

[Test Methods and Remarks]

	C	lass 1	Class 2			
Preconditioning	1	None	Thermal treatment (at 150°C for 1 hr) Note 2			
	Step	Temperature	e(°C)	Time(min.)		
1 cycle	1	Lowest operating temper	30±3			
	2	Normal temperature	Normal temperature			
	3	Highest operating temper	rature +0/-3 30±3			
	4	Normal temperature		2 to 3		
Number of cycles	5 times					
Recovery	6 to 24 hrs (Stand	ard condition) Note 5	24±2 hrs (S	tandard conditior	n) Note 5	

15. Humi	dity (Steady State)			
	Temperature Compensating (Class 1)	Standard	Appearance: Capacitance change: Q : Insulation resistance:	No abnormality Within $\pm 5\%$ or $\pm 0.5pF$, whichever is larger. C<10pF: Q≥200+10C 10≦C<30pF: Q≥275+2.5C C≥30pF: Q≥350 (C:Nominal capacitance) 1000 MΩ min.
Specified Value		High Frequency Type	Appearance: Capacitance change: Insulation resistance:	No abnormality Within $\pm 0.5 pF$, 1000 M Ω min.
	High Permittivity(Class 2) N	lote 1	Appearance: Capacitance change: Dissipation factor :	No abnormality Within ±12.5% (BJ, B7, C6, C7) Within ±30% (F) 5.0% max. (BJ, B7, C6, C7) 11.0% max. (F)
			Insulation resistance:	50 MΩ μ F or 1000 MΩ whichever is smaller.

[Test Methods and Remarks]

Class 1			Class 2	
	Standard	High Frequency Type		All items
Preconditioning		None	Preconditioning	Thermal treatment (at 150°C for 1 hr) Note
Temperature	40±2°C	60±2°C	Temperature	40±2°C
Humidity	90 t	o 95%RH	Humidity	90 to 95%RH
Duration	500+	24/-0 hrs	Duration	500+24/-0 hrs
Recovery	6 to 24 hrs (Stand	dard condition) Note 5	Recovery	24±2 hrs (Standard condition) Note 5

16. Humi	dity Loading						
	Temperature Compensating (Class 1)	Standard	Appearance: Capacitance change: Q : Insulation resistance:	No abnormality Within $\pm 7.5\%$ or $\pm 0.75pF$, wh C $<30pF$: Q $\geq 100+10C/3$ C $\geq 30pF$: Q ≥ 200 500 M Ω min.	ichever is larger. (C : Nominal capacitance)		
Specified Value		High Frequency Type	Appearance: Capacitance change: Insulation resistance:	No abnormality C \leq 2pF : Within \pm 0.4 pF C>2pF : Within \pm 0.75 pF 500 M Ω min.	(C : Nominal capacitance)		
	High Permittivity (Class 2) Note 1		Appearance: Capacitance change: Dissipation factor : Insulation resistance:	No abnormality : Within ±12.5% (BJ, B7, C6, C7) Within ±30% (F) 5.0% max. (BJ, B7, C6, C7) 11.0% max. (F)			

[Test Methods and Remarks]

Class 1			Class 2				
	Standard	High Frequency Type		All items			
Preconditioning	None		Preconditioning	Voltage treatment			
Temperature	40±2°C 60±2°C			(Rated voltage are applied for 1 hour at 40°C) Note			
Humidity	90 t	o 95%RH	Temperature	40±2℃			
Duration	500+	-24/-0 hrs	Humidity	90 to 95%RH			
Applied voltage	Rated voltage		Duration	500+24/-0 hrs			
Charge/discharge current	50	mA max.	Applied voltage	Rated voltage			
Recovery	6 to 24 hrs (Standard condition) Note 5		Charge/discharge current	50mA max.			
-			Recovery	24±2 hrs (Standard condition) Note 5			

17. High Temperature Loading

			Appearance:	No abnormality
	Temperature Compensating (Class 1)	Standard	Capacitance change: Q: Insulation resistance:	Within $\pm 3\%$ or $\pm 0.3pF$, whichever is larger. C<10pF: Q \geq 200+10C 10 \leq C<30pF: Q \geq 275+2.5C C \geq 30pF: Q \geq 350 (C:Nominal capacitance) 1000 MQ min.
Specified Value		High Frequency Type	Appearance: Capacitance change: Insulation resistance:	No abnormality Within $\pm 3\%$ or $\pm 0.3 pF$, whichever is larger. 1000 M Ω min.
	High Permittivity (Class 2) Note 1		Appearance: Capacitance change: Dissipation factor :	No abnormality Within ±12.5% (BJ, B7, C6, C7) Within ±30% (F) 5.0% max. (BJ, B7, C6, C7) 11.0% max. (F)
			Insulation resistance:	50 M $\Omega\mu$ F or 1000 M Ω , whichever is smaller.

[Test Methods and Remarks]

Class 1

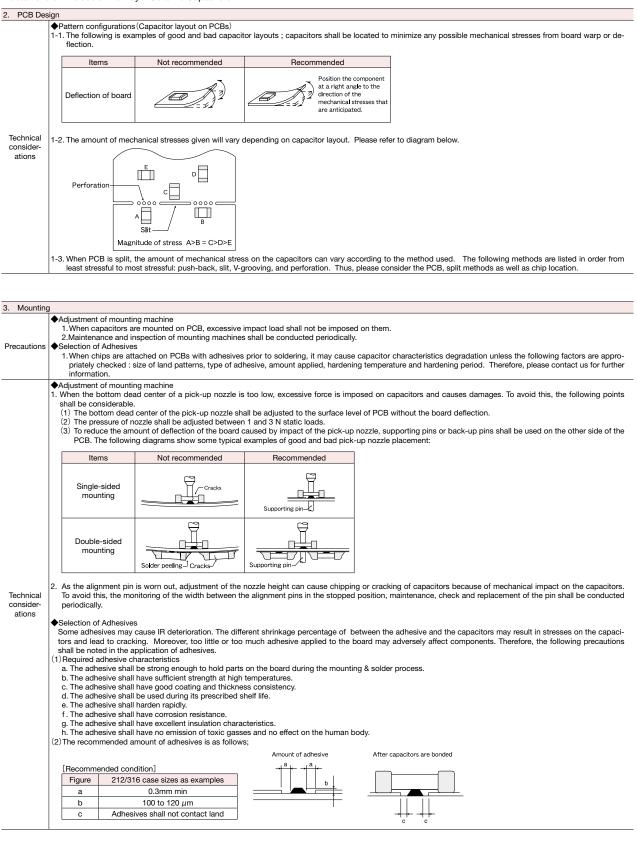
Class 2

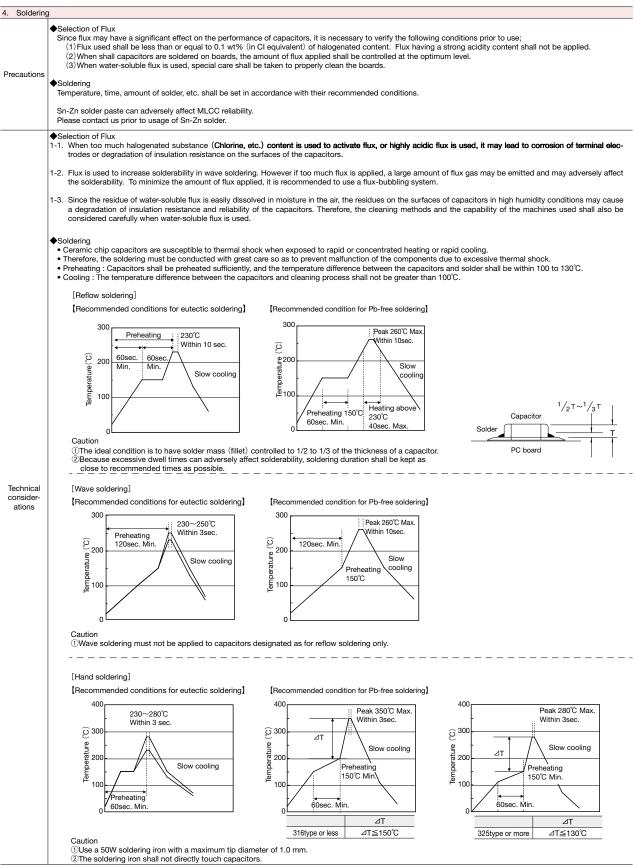
01000 1			Oldool					
	Standard	High Frequency Type		BJ, F	C6	B7, C7		
Preconditioning	None		Preconditioning	Voltage treatment (Twice the rated voltage shall be				
Temperature	1	25±3℃		applied for 1 hour at 85°C, 105°C or 125°C) Note 3, 4				
Duration	1000+48/-0 hrs Rated voltage×2		Temperature	85±2°C	105±3℃	125±3℃		
Applied voltage			Duration	1000+48/-0 hrs				
Charge/discharge current	50)mA max.	Applied voltage	Rated voltage×2 Note 4				
Recovery	6 to 24hr (Standard condition) Note 5		Charge/discharge current	50mA max.				
<u> </u>			Recovery	24±2 hrs	s (Standard conditior	n) Note 5		

Note 1 The figures indicate typical specifications. Please refer to individual specifications in detail.

Note 3 The inducate typical specifications. Prease feither to individual specifications and the test in the test of t

Note 4 Standard condition: Temperatures to 35°C, Relative humidity: 45 to 85 % RH, Air pressure: 86 to 106kPa
 When there are questions concerning measurement results, in order to provide correlation data, the test shall be conducted under the following condi-


tion. Temperature: 20±2°C, Relative humidity: 60 to 70 % RH, Air pressure: 86 to 106kPa


Unless otherwise specified, all the tests are conducted under the "standard condition".

1 Oir													
1. Circuit De		cation o	of ope	erating envi	ironment. e	lectrical rat	ing and per	formance					
	1.A m	nalfunct	tion c	of equipmer	nt in fields	such as me	dical, aeros	space, nucle				s harm to human life or have severe social ramif	
					to be used	in such eq	uipment m	ay require h	nigher safet	y and relia	bility, and sl	hall be clearly differentiated from them used in	general pu
	pose applications. ◆Operating Voltage (Verification of Rated voltage)												
Precautions	 ♦Operating Voltage (Verification of Rated voltage) 1. The operating voltage for capacitors must always be their rated voltage or less. 												
	If an AC voltage is loaded on a DC voltage, the sum of the two peak voltages shall be the rated voltage or less. For a circuit where an AC or a pulse voltage may be used, the sum of their peak voltages shall also be the rated voltage or less.												
				ed voltage e time is us			less reliad	inty of capa	icitors may	De deterioi	ated in casi	e that either a high frequency AC voltage or a p	uise voita
. PCB Des		J 1											
. FUB Des	l.	rn conf	igura	tions (Desi	gn of Land	-patterns)							
	1.Wh	en cap	acito	rs are moui	nted on PC	Bs, the am		der used (s	ize of fillet)	can directl	y affect the	capacitor performance. Therefore, the following	g items m
						of land pat		المحمل والماد	4		eeldee The		
		mount			J Carl Caus	e mechanic	al stresses	which lead	to chip ble	aking or cr	acking. The	refore, please consider appropriate land-pattern	is for pro
recautions								o the same	land, each	component	's soldering	point shall be separated by solder-resist.	
						t on PCBs)			hard a barbarbarbarbarbarbarbarbarbarbarbarbarb				
												nanufacturing processes (PCB cutting, board in n, land pattern configurations and positions of o	
	shall I	be care	fully	considered	to minimiz	e stresses.		5		-,,		,	
				tions (Desi			amplac of r	acommond	od land nat	torns to pr	wort oxoos	sive solder amounts.	
						r typical ch			eu ianu pai	terns to pre	event exces	sive solder amounts.	
		Multila	ayer (Ceramic Ca				imensions	(unit: mm)				
		Wave	-sold	ering				_				Land patterns for PCBs	
		Тур	be	107	212	316	325					Land	
		Size	L	1.6	2.0	3.2	3.2					Chip capacitor So	lder-resist
			W	0.8	1.25	1.6	2.5						
		A				1.8 to 2.5	-	-				c↑2 ♥ 2	
		В				0.8 to 1.7		-					
		С		0.6 to 0.8	0.9 to 1.2	1.2 to 1.6	1.8 to 2.5]					
		Reflow	v-solo	dering	-			_	-			IBIAIBI	
		Typ	be	042	063	105	107	212	316	325	432		
		Size	L	0.4	0.6	1.0	1.6	2.0	3.2	3.2	4.5	Chip capacitor	
			W	0.2	0.3	0.5	0.8	1.25	1.6	2.5	3.2		
		A				0.45 to 0.55	1		1.8 to 2.5	1.8 to 2.5	2.5 to 3.5		
		B				0.40 to 0.50			1.0 to 1.5 1.2 to 2.0	1.0 to 1.5 1.8 to 3.2	1.5 to 1.8	 ←───→	
				0.15 10 0.30	0.25 10 0.40	0.45 to 0.55	0.6 10 0.8	0.9 10 1.6	1.2 to 2.0	1.8 10 3.2	2.3 to 3.5		
		LWDC	: Re	commende	ed land dim	ensions for	reflow-sole	dering (unit	: mm)			LWDC	
		Тур	се	105		107	212						
		0:	L	0.52		0.8	1.25						
		Size	W	1.0		1.6	2.0					w	
		A		0.18 to 0		25 to 0.3	0.5 to 0.						
		E		0.2 to 0.		3 to 0.4	0.4 to 0.						
Technical		C	;	0.9 to 1	.1 1.	5 to 1.7	1.9 to 2.	1					
consider-		Array	type:	Recomme	ended land	dimensions	s for reflow-	-soldering	(unit: mm)			2 circuits 4 circuits	
ations		Тур	ре	096 (2 cir	cuits) 110	(2 circuits)	212 (2 ci	rcuits) 212	2(4 circuits)		Chip capacitor	
			L	0.9		1.37	2.0		2.0				
		Size	w	0.6		1.0	1.2	5	1.25				
		а	l	0.25 to 0	0.35 0.	35 to 0.45	0.5 to	0.6	0.5 to 0.6				
		b)	0.15 to (0.25 0.	55 to 0.65	0.5 to	0.6	0.5 to 0.6				a a
		c		0.15 to (0.3 to 0.4	0.5 to		0.2 to 0.3	_			d
		d		0.45		0.64	1.0)	0.5			Land	
	(2)E	xample	es of	good and b	ad solder	application							
			Iter	ns	Not r	ecommend	ed	Reco	mmended				
					Lead wire	of component	\	Solder	-resist				
				unting of	Λ		1						
				rieaded	_	┢┲┲┿┷				- I			
		SM		nents					L_	5			
		SM		nents									
		SMI	ompo		Cha	ssis o l der(for grour	nding)		der resist				
		SMI cc	ompo	onent		ssis older(for grour	nding)		older-resist				
		SMI cc C place	ompo				nding)		older-resist	ı			
		SMI cc C place th	ompo ompo ement ne ch	onent t close to assis		nd	nding)		older-resist	1			
		SMI cc C place th Har	compo compo ement ne ch	onent t close to assis		nd pf component	nding)	Solder-res		1			
		SMI cc place th Har	ompo ompo ement ne ch nd-sc of lea	onent t close to assis Idering ided nents	Lead wire	nd pf component	nding)			1 //			
		SMI cc place th Har cc ne	ompo ompo ement ne ch nd-sc of lea ompo ar mo	onent t close to assis oldering ided inents ounted	Lead wire	nd pf component	nding)			1			
		SMI cc place th Har cc ne	ompo ompo ement ne ch nd-sc of lea ompo ar mo	onent t close to assis Idering ided nents	Lead wire	nd pf component	nding)		ist pe	1			
		SMI CC place th Har cc ne cc	ompo ompo ement ne ch nd-sc of lea ompo ar mo	onent t close to assis oldering ided nents ounted nents	Lead wire	nd pf component	nding)			1			
		C place th Har cc Reaction	ompo ement ne ch nd-sc of lea ompo ar mo ompo Horizo ompo	onent t close to assis oldering ided inents ounted inents ontal onent	Lead wire	nd pf component	nding)		ist pe	1			
		C place th Har cc Reaction	ompo ement ne ch nd-sc of lea ompo ar mo ompo Horizo ompo	onent t close to assis oldering ided inents ounted inents ontal	Lead wire	nd pf component	nding)		ist pe	1			

To next page

5. Cleaning	
	♦Cleaning conditions
Precautions	1. When PCBs are cleaned after capacitors mounting, please select the appropriate cleaning solution in accordance with the intended use of the cleaning. (e.g. to remove soldering flux or other materials from the production process.)
	2. Cleaning condition shall be determined after it is verified by using actual cleaning machine that the cleaning process does not affect capacitor's characteristics.
Technical consider- ations	 The use of inappropriate cleaning solutions can cause foreign substances such as flux residue to adhere to capacitors or deteriorate their outer coating, resulting in a degradation of the capacitor's electrical properties (especially insulation resistance). Inappropriate cleaning conditions (insufficient or excessive cleaning) may adversely affect the performance of the capacitors. In the case of ultrasonic cleaning, too much power output can cause excessive vibration of PCBs which may lead to the cracking of capacitors or the soldered portion, or decrease the terminal electrodes' strength. Therefore, the following conditions shall be carefully checked; Ultrasonic output : 20 W/2 or less Ultrasonic frequency : 40 kHz or less Ultrasonic washing period : 5 min. or less
6. Resin coa	ating and mold
Precautions	 With some type of resins, decomposition gas or chemical reaction vapor may remain inside the resin during the hardening period or while left under normal stor- age conditions resulting in the deterioration of the capacitor's performance. When a resin's hardening temperature is higher than capacitor's operating temperature, the stresses generated by the excessive heat may lead to damage or destruction of capacitors. The use of such resins, molding materials etc. is not recommended.
7. Handling	
Precautions	 Splitting of PCB When PCBs are split after components mounting, care shall be taken so as not to give any stresses of deflection or twisting to the board. Board separation shall not be done manually, but by using the appropriate devices. Mechanical considerations Be careful not to subject capacitors to excessive mechanical shocks. (1) ff ceramic capacitors are dropped onto a floor or a hard surface, they shall not be used.
	(2) Please be careful that the mounted components do not come in contact with or bump against other boards or components.
-	
8. Storage of	
Precautions	Storage 1. To maintain the solderability of terminal electrodes and to keep packaging materials in good condition, care must be taken to control temperature and humidity in the storage area. Humidity should especially be kept as low as possible. Recommended conditions Ambient temperature : Below 30°C Humidity : Below 70% RH
	The ambient temperature must be kept below 40°C. Even under ideal storage conditions, solderability of capacitor is deteriorated as time passes, so capaci- tors shall be used within 6 months from the time of delivery. • Ceramic chip capacitors shall be kept where no chlorine or sulfur exists in the air. 2. The capacitance values of high dielectric constant capacitors will gradually decrease with the passage of time, so care shall be taken to design circuits. Even if capacitance value decreases as time passes, it will get back to the initial value by a heat treatment at 150°C for 1hour.
	If capacitors are stored in a high temperature and humidity environment, it might rapidly cause poor solderability due to terminal oxidation and quality loss of taping packaging materials. For this reason, capacitors shall be used within 6 months from the time of delivery. If exceeding the above period, please check solderability be fore using the capacitors.
*RCR-2335E	3(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA.

%RCR-2335B(Safety Application Guide for fixed ceramic capacitors for use in electronic equipment) is published by JEITA. Please check the guide regarding precautions for deflection test, soldering by spot heat, and so on.