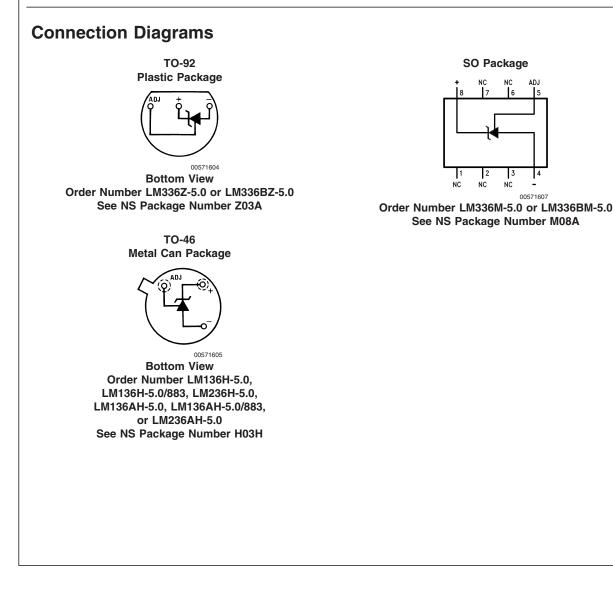


LM136-5.0/LM236-5.0/LM336-5.0 **5.0V Reference Diode General Description**

The LM136-5.0/LM236-5.0/LM336-5.0 integrated circuits are precision 5.0V shunt regulator diodes. These monolithic IC voltage references operate as a low temperature coefficient 5.0V zener with 0.6 Ω dynamic impedance. A third terminal on the LM136-5.0 allows the reference voltage and temperature coefficient to be trimmed easily.

The LM136-5.0 series is useful as a precision 5.0V low voltage reference for digital voltmeters, power supplies or op amp circuitry. The 5.0V makes it convenient to obtain a stable reference from low voltage supplies. Further, since the LM136-5.0 operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

The LM136-5.0 is rated for operation over -55°C to +125°C while the LM236-5.0 is rated over a -25°C to +85°C temperature range. The LM336-5.0 is rated for operation over a 0°C to +70°C temperature range. See the connection diagrams for available packages. For applications requiring 2.5V see LM136-2.5.


3

00571607

NC

Features

- Adjustable 4V to 6V
- Low temperature coefficient
- Wide operating current of 600 µA to 10 mA
- 0.6Ω dynamic impedance
- ± 1% initial tolerance available
- Guaranteed temperature stability
- Easily trimmed for minimum temperature drift
- Fast turn-on
- Three lead transistor package

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

15mA
10mA
to +150°C
to +150°C
C to +85°C

LM336-5.0	0°C to +70°C
Soldering Information	
TO-92 Package (10 sec.)	260°C
TO-46 Package (10 sec.)	300°C
SO Package	
Vapor Phase (60 sec.)	215°C
Infrared (15 sec.)	220°C

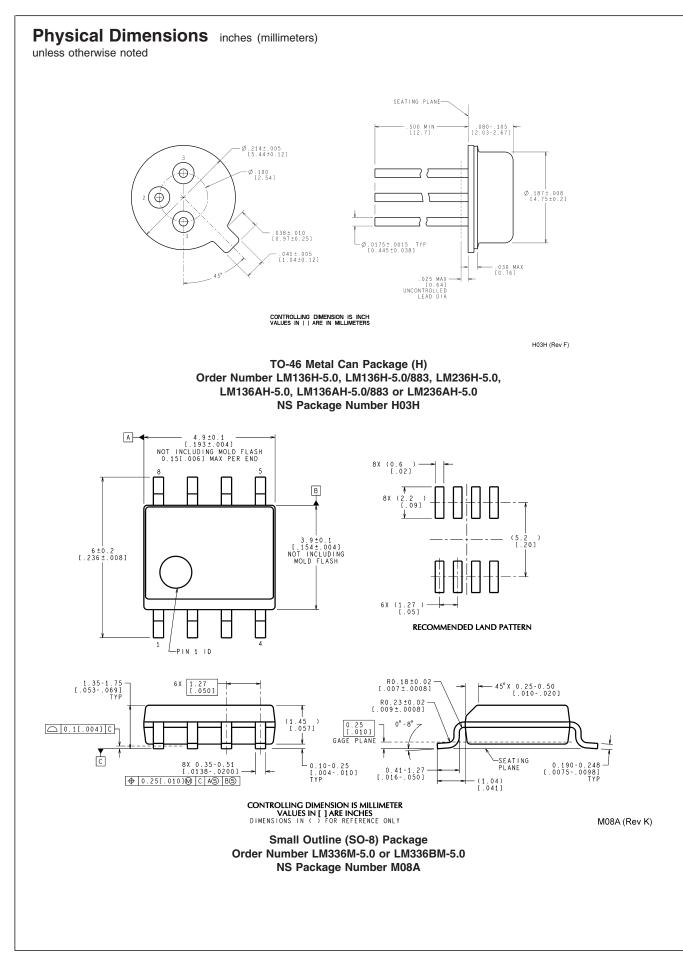
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" (appendix D) for other methods of soldering surface mount devices.

Electrical Characteristics

(Note 3)

Parameter	Conditions	LM136A-5.0/LM236A-5.0 LM136-5.0/LM236-5.0		LM336B-5.0 LM336-5.0			linite	
Parameter	Conditions	Min	5-5.0/∟м∡ Тур	236-5.0 Max	-	иззо-э. Тур	Max	Units
Reverse Breakdown Voltage	$T_{A}=25^{\circ}C, I_{B}=1 \text{ mA}$		Typ	IVIAX	IVIIII	тур	IVIAA	
	LM136-5.0/LM236-5.0/LM336-5.0	4.9	5.00	5.1	4.8	5.00	5.2	v
	LM136A-5.0/LM236A-5.0, LM336B-5.0	4.95	5.00	5.05	4.90	5.00	5.1	v
Reverse Breakdown Change	T _A =25°C,		6	12		6	20	mV
With Current	600 μA≤I _R ≤10 mA							
Reverse Dynamic Impedance	T _A =25°C, I _B =1 mA, f = 100 Hz		0.6	1.2		0.6	2	Ω
Temperature Stability	V _R Adjusted 5.00V							
(Note 4)	I _R =1 mA, (<i>Figure 2</i>)							
	0°C≤T _A ≤70°C (LM336-5.0)					4	12	mV
	–25°C≤T _A ≤+85°C (LM236-5.0)		7	18				mV
	–55°C≤T _A ≤+125°C (LM136-5.0)		20	36				mV
Reverse Breakdown Change	600 μA≤I _R ≤10 mA		6	17		6	24	mV
With Current								
Adjustment Range	Circuit of Figure 1		±1			±1		V
Reverse Dynamic Impedance	I _R = 1 mA		0.8	1.6		0.8	2.5	Ω
Long Term Stability	$T_A=25^{\circ}C\pm0.1^{\circ}C$, $I_R=1$ mA, t = 1000 hrs		20			20		ppm

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Electrical specifications do not apply when operating the device beyond its specified operating conditions.


Note 2: For elevated temperature operation, T_j max is:

LM136 150°C LM236 125°C LM336 100°C

Thermal Resistance	TO-92	TO-46	SO-8
θ_{ja} (Junction to Ambient)	180°C/W (0.4" Leads)	440°C/W	165°C/W
	170°C/W (0.125"		
	Leads)		
θ_{ja} (Junction to Case)	N/A	80°C/W	N/A

Note 3: Unless otherwise specified, the LM136-5.0 is specified from $-55^{\circ}C \le T_A \le +125^{\circ}C$, the LM236-5.0 from $-25^{\circ}C \le T_A \le +85^{\circ}C$ and the LM336-5.0 from $0^{\circ}C \le T_A \le +70^{\circ}C$.

Note 4: Temperature stability for the LM336 and LM236 family is guaranteed by design. Design limits are guaranteed (but not 100% percent production tested) over the indicated temperature and supply voltage ranges. These limits are not used to calculate outgoing quality levels. Stability is defined as the maximum charge in V_{REF} from 25°C to $T_{\text{A}}(\text{min})$ or $T_{\text{A}}(\text{max})$.

LM136-5.0/LM236-5.0/LM336-5.0