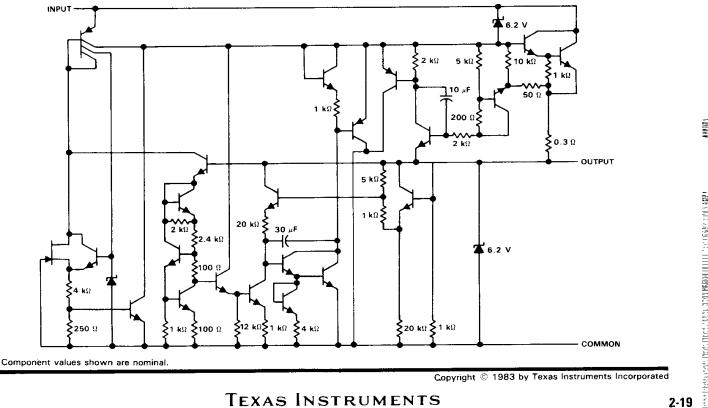

LINEAR INTEGRATED CIRCUITS

TYPE LM323 3-AMP, 5-VOLT POSITIVE REGULATOR D2717, JANUARY 1983

==____

- 3-A Output Current Capability
- 2.5-V Dropout Voltage
- Thermal Shutdown Protection
- Internal Current Limiting Protection
- Output Impedance . . . 0.01 Ω Typ
- Power Dissipation up to 30 W
- Direct Replacement for National Semiconductor LM323


description

The LM323 is a three-terminal, fixed-positive-voltage regulator with a 5-volt output and a load driving capability of 3 amperes. The LM323 provides high output current capabilities through new circuit design and processing without sacrificing the regulation characteristics of lower-current devices.

The internal current-limiting and thermal-shutdown features make this device essentially immune to overload. The LM323 requires no external components for fixed-voltage operation, however if the device is more than four inches from the input filter capacitor, a 1-microfarad solid-tantalum capacitor should be used at the input. A 0.1-microfarad capacitor at the output may be used to improve output transient response. In addition to its use as a fixed-voltage regulator, the LM323 can be used with external components to obtain adjustable output voltages and currents and can also be used as the power-pass element in precision regulators.

The LM323 is characterized for operation from 0°C to 125°C.

schematic diagram

INCORPORATED

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

TYPE LM323 3-AMP, 5-VOLT POSITIVE REGULATOR

absolute maximum ratings over operating temperature range (unless otherwise noted)

input voltage		20 V
Continuous total dissipation at (or below) 25 °C free-air temperature (see Note 1)		3.5 W
Continuous total dissipation at (or below) 25 °C rase temperature (see Note 1)		30 W
Operating free-air, case, or virtual junction temperature range	– 55°C to	150°C
Operating free-air, case, or virtual junction temperature range	– 65 °C to	150°C
Storage temperature range		300 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds		

NOTE 1: For operation above 25°C free-air temperature, refer to Figure 1. For operation above 25°C case temperature, refer to Figure 2.

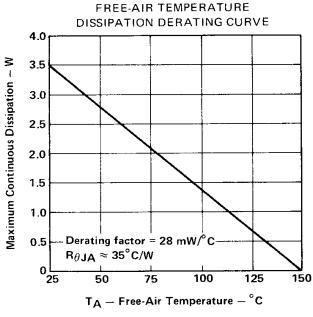
recommended conditions

	MIN	NOM MAX	UNIT	
	7.5	15	T V	
Input voltage		3	A	1
Output current	- 0	125	°C	1
Operating virtual junction temperature range, Tj				

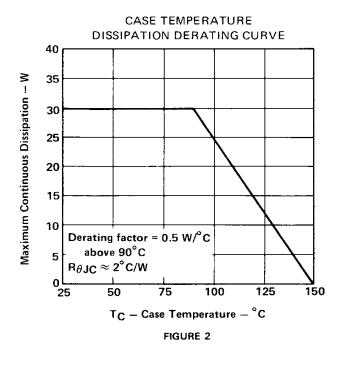
electrical characteristics at 25 °C virtual junction temperature, P \leq 30 W (unless otherwise noted)

PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
PARAMETER	V _I = 7.5 V,	10 = 0		4.8	5	5.2	j
Output voltage	$V_{\rm I} = 7.5 \text{ V to } 15 \text{ V},$ P \leq 30 W,	$I_0 = 0 \text{ to } 3 \text{ A},$ $T_J = 0^{\circ}\text{C to } 12$	5°C	4.75		5.25	V
Input regulation	$V_{\rm I} = 7.5 \text{ V to } 15 \text{ V},$		See Note 2		5	25	mV
	$V_1 = 7.5 V_1$	$I_0 = 0$ to 3 A,	See Note 2		25	100	mV
Output regulation Output noise voltage	f = 100 Hz to 100 kH				40		<u>μ</u> V
Output voltage long-term drift (see Note 3)	After 1000 h at Tj and both at maximum rated					35	mV
Bias current	$V_{I} = 7.5 V \text{ to } 15 V,$ $T_{J} = 0^{\circ}C \text{ to } 125^{\circ}C$	$I_0 = 0$ to 3 A,			12	20	mA
Short-circuit output current	$V_1 = 7.5 V$				4	5	
	$V_{i} = 15 V$				3	4.5	

NOTES: 2. Input regulation and output regulation are measured using pulse techniques (t_W ≤ 1 ms, duty cycle ≤ 5%) to limit changes in average internal dissipation. Output voltage changes due to large changes in internal dissipation must be taken into account separately.


 Since long-term drift cannot be measured on the individual device prior to shipment, this specification is not intended to be a guarantee or warranty. It is an engineering estimate of the average drift to be expected from lot to lot.

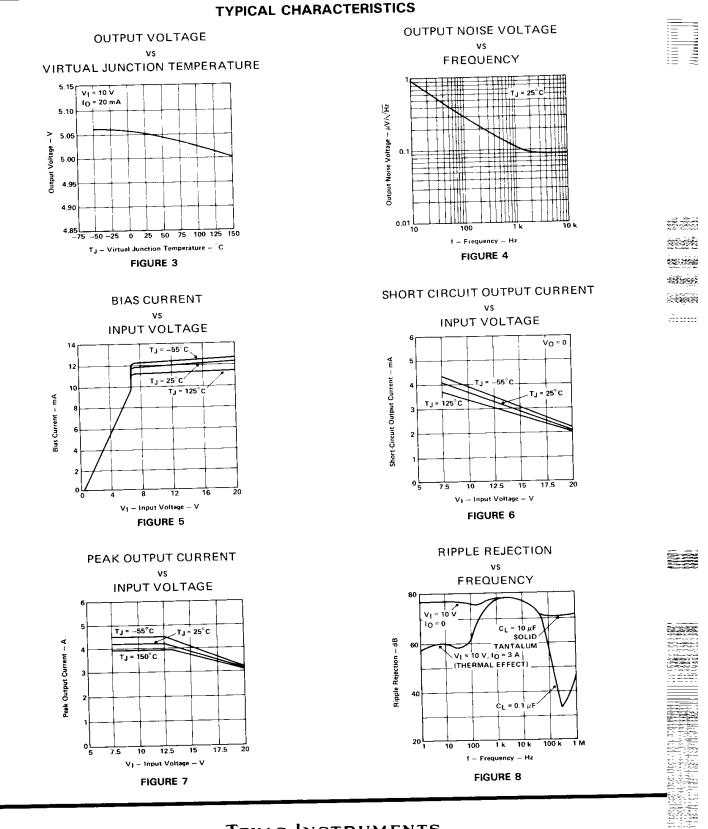
TEXAS INSTRUMENTS


POST OFFICE BOX 225012 . DALLAS, TEXAS 75265

0 V 5 W 0 W

THERMAL INFORMATION

2-21

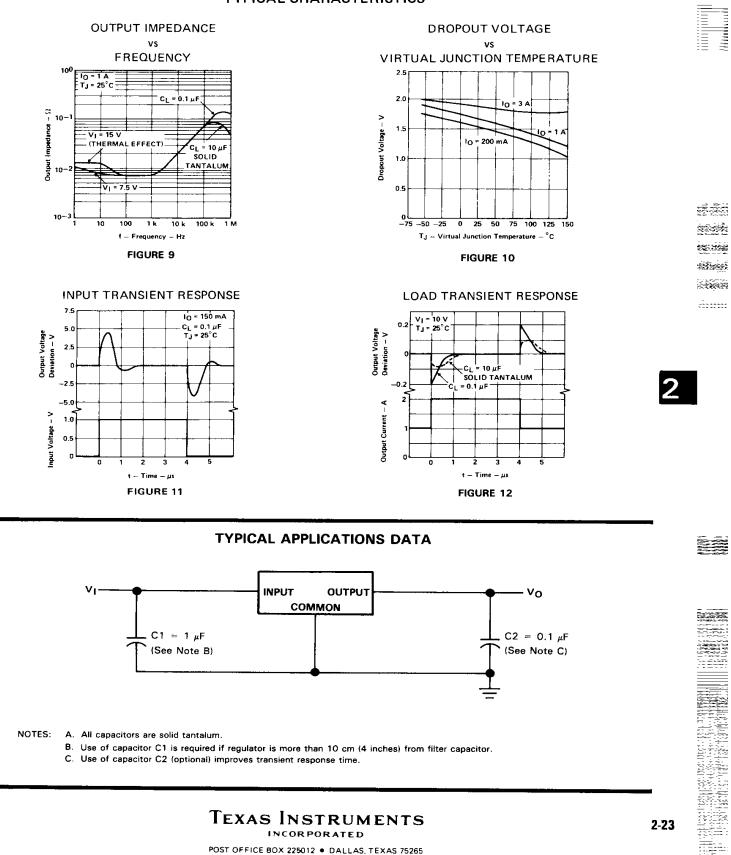

Huddan I

<u>100</u>

ternes téresi

TEXAS INSTRUMENTS

POST OFFICE BOX 225012 . DALLAS, TEXAS 75265



2-22

TEXAS INSTRUMENTS INCORPORATED POST OFFICE BOX 225012 • DALLAS, TEXAS 75265

TYPE LM323 3-AMP, 5-VOLT POSITIVE REGULATOR

