HM514170C Series HM51S4170C Series

262,144-word × 16-bit Dynamic Random Access Memory

HITACHI

Rev. 1.0 Jul. 21, 1995

Description

The Hitachi HM51(S)4170C are CMOS dynamic RAM organized as 262,144-word \times 16-bit. HM51(S)4170C have realized higher density, higher performance and various functions by employing 0.8 μ m CMOS process technology and some new CMOS circuit design technologies. The HM51(S)4170C offer fast page mode as a high speed access mode. Multiplexed address input permits the HM51(S)4170C to be packaged in standard 400-mil 40-pin plastic SOJ and standard 400-mil 44-pin plastic TSOPII. Internal refresh timer enables HM51S4170C self refresh operation.

Features

- Single 5 V (±10%)
- High speed
 - Access time: 70 ns/80 ns (max)
- Low power dissipation
 - Active mode: 660 mW/578 mW (max)
 - Standby mode: 11 mW (max)

1.1 mW (max) (L-version)

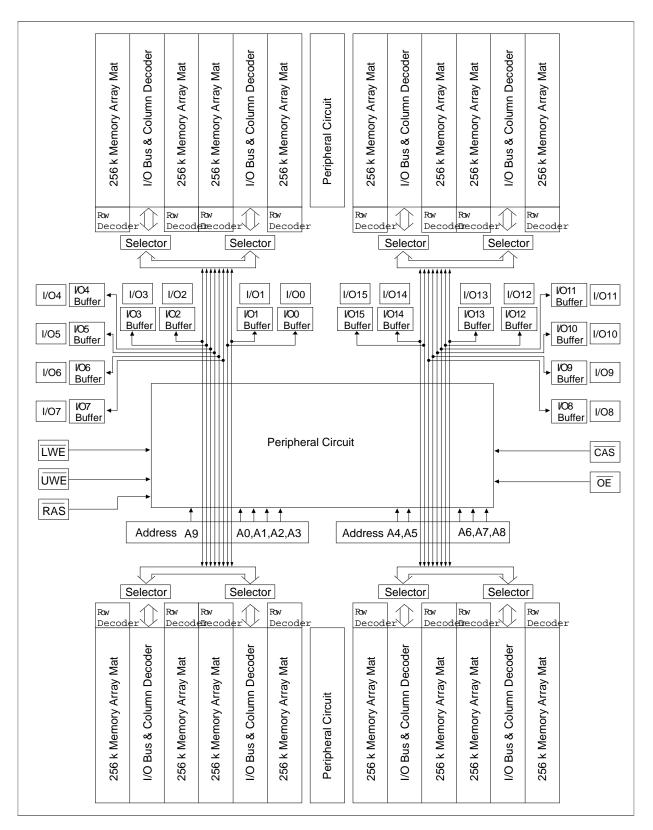
- Fast page mode capability
- 1024 refresh cycles: 16 ms

128 ms (L-version)

- 2 WE-byte control
- 2 variations of refresh
 - RAS-only refresh
 - $\overline{\text{CAS}}$ -before- $\overline{\text{RAS}}$ refresh
- Battery backup operation (L-version)
- Self refresh operation (HM51S4170C)

Ordering Information

Туре No.	Access Time	Package
HM514170CJ-7 HM514170CJ-8	70 ns 80 ns	400-mil 40-pin plastic SOJ (CP-40DA)
HM514170CLJ-7 HM514170CLJ-8	70 ns 80 ns	
HM51S4170CJ-7 HM51S4170CJ-8	70 ns 80 ns	
HM51S4170CLJ-7 HM51S4170CLJ-8	70 ns 80 ns	
HM514170CTT-7 HM514170CTT-8	70 ns 80 ns	400-mil 44-pin plastic TSOPII (TTP-44/40DB)
HM514170CLTT-7 HM514170CLTT-8	70 ns 80 ns	
HM51S4170CTT-7 HM51S4170CTT-8	70 ns 80 ns	
HM51S4170CLTT-7 HM51S4170CLTT-8	70 ns 80 ns	


Pin Arrangement

HM51S4170CJ/CLJ Series V_{CC} 1 40 V_{SS} $VO0$ 2 39 $VO15$ $VO1$ 3 38 $VO14$ $VO2$ 4 37 $VO13$ $VO3$ 5 36 $VO12$ V_{CC} 6 35 V_{SS} $VO4$ 7 34 $VO10$	HM514170CTT/CLTT Series HM51S4170CTT/CLTT Series V_{CC} 1 44 V_{SS} $V00$ 2 43 $V015$ $V01$ 3 42 $V014$ $V02$ 4 41 $V013$ $V03$ 5 40 $V012$ V_{CC} 6 39 V_{SS} $V04$ 7 38 $V011$ $V05$ 8 37 $V010$
V_{CC} 1 40 V_{SS} VOO 2 39 $VO15$ $VO1$ 3 38 $VO14$ $VO2$ 4 37 $VO13$ $VO3$ 5 36 $VO12$ V_{CC} 6 35 VSS $VO4$ 7 34 $VO11$ $VO5$ 8 33 $VO10$ $VO6$ 9 32 $VO9$ $VO7$ 10 31 $VO8$ NC 11 30 NC LWE 12 29 NC UWE 13 28 CAS RAS 14 27 CE $A9$ 15 26 $A8$ $A0$ 16 25 $A7$ $A1$ 17 24 $A6$ $A2$ 18 23 $A5$ $A3$ 19 22 $A4$ V_{CC} 20 21 V_{SS}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Pin Description

Pin Name	Function
A0 – A9	Address input – Row address A0 – A9 – Column address A0 – A7 – Refresh address A0 – A9
I/O0 - I/O15	Data-in/data-out
RAS	Row address strobe
CAS	Column address strobe
UWE / LWE	Read/write enable
ŌĒ	Output enable
V _{cc}	Power (+5 V)
V _{ss}	Ground
NC	No connection

Block Diagram

Operation Mode

The HM51(S)4170C series has the following 11 operation modes.

- 1. Read cycle
- 2. Early write cycle
- 3. Delayed write cycle
- 4. Read-modify-write cycle
- 5. RAS-only refresh cycle
- 6. \overline{CAS} -before- \overline{RAS} refresh cycle
- 7. Self refresh cycle (HM51S4170C)
- 8. Fast page mode read cycle
- 9. Fast page mode early write cycle
- 10. Fast page mode delayed write cycle
- 11. Fast page mode read-modify-write cycle

Inputs					
RAS	CAS	UWE	LWE	Output	Operation
Н	Н	D	D	Open	Standby
Н	L	Н	Н	Valid	Standby
L	L	Н	Н	Valid	Read cycle
L	L	L*2	L*2	Open	Early write cycle
L	L	L*2	L*2	Undefined	Delayed write cycle
L	L	H to L	H to L	Valid	Read-modify-write cycle
L	Н	D	D	Open	RAS-only refresh cycle
H to L	L	D	D	Open	CAS-before-RAS refresh cycle Self refresh cycle (HM51S4170C)
L	H to L	Н	Н	Valid	Fast page mode read cycle
L	H to L	L*2	L*2	Open	Fast page mode early write cycle
L	H to L	L*2	L*2	Undefined	Fast page mode delayed write cycle
L	H to L	H to L	H to L	Valid	Fast page mode read modify-write cycle

Notes: 1. H: High (inactive) L: Low (active) D: H or L

2. $t_{_{WCS}} \ge 0$ ns Early write cycle

t_{wcs} < 0 ns Delay write cycle

Mode is determined by the OR function of the UWE and LWE. (Mode is set by the earliest of UWE and LWE active edge and reset by the latest of UWE and LWE inactive edge.) However write OPERATION and output HIZ control are done independently by each UWE, LWE.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Voltage on any pin relative to $\rm V_{\rm ss}$	V _T	-1.0 to +7.0	V
Supply voltage relative to $V_{\mbox{\scriptsize SS}}$	V _{cc}	-1.0 to +7.0	V
Short circuit output current	lout	50	mA
Power dissipation	P _T	1.0	W
Operating temperature	Topr	0 to +70	°C
Storage temperature	Tstg	-55 to +125	°C

Recommended DC Operating Conditions (Ta = 0 to $+70^{\circ}$ C)

Parameter	Symbol	Min	Тур	Max	Unit	Note
Supply voltage	V _{ss}	0	0	0	V	2
	V _{cc}	4.5	5.0	5.5	V	1, 2
Input high voltage	V _{IH}	2.4		6.5	V	1
Input low voltage	V _{IL}	-1.0		0.8	V	1

Notes: 1. All voltage referred to $\rm V_{\rm ss}$

2. The supply voltage with all V_{cc} pins must be on the same level. The supply voltage with all V_{ss} pins must be on the same level.

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)

		HM51	120—105mARAS, CAS of $t_{RC} = min$ 2—2mATTL interface RAS, CAS = Dout = High1—1mACMOS inter				
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Operating current ^{*1, *2}	I _{cc1}		120		105	mA	\overline{RAS} , \overline{CAS} cycling t_{RC} = min
Standby current	I _{CC2}		2		2	mA	TTL interface RAS, $\overline{CAS} = V_{H}$ Dout = High-Z
			1		1	mA	$\label{eq:cmodel} \begin{array}{l} \mbox{CMOS} \ \mbox{interface} \\ \mbox{RAS}, \ \mbox{CAS}, \ \mbox{UWE}, \ \mbox{LWE}, \ \mbox{OE} \geq \\ \mbox{V}_{cc} - 0.2 \ \mbox{V} \\ \mbox{Dout} = \ \mbox{High-Z} \end{array}$
Standby current (L-version)	I _{CC2}		200		200	μΑ	$\label{eq:cmost} \begin{array}{l} \hline CMOS \text{ interface} \\ \hline RAS, \ \overline{CAS}, \ \overline{OE}, \ \overline{UWE}, \ \overline{LWE} \geq \\ V_{cc} - 0.2 \ V \\ \hline Dout = High \end{array}$
RAS-only refresh current ^{*2}	I _{CC3}		120	—	100	mA	t _{RC} = min

		HM514	170C, H	M51S41	70C		
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Standby current ^{*1}	I _{CC5}		5	_	5	mA	$\overline{RAS} = V_{IH}, \overline{CAS} = V_{IL}$ Dout = enable
CAS-before-RAS refresh current ^{*2}	I _{CC6}	_	120	_	100	mA	t _{RC} = min
Fast page mode current*1,*3	I _{CC7}	_	130	_	120	mA	t _{PC} = min
Battery backup current ^{•4} (Standby with CBR refresh) (L-version)	I _{CC10}		300		300	μA	$\begin{array}{l} \mbox{Standby: CMOS interface} \\ \mbox{Dout = High-Z} \\ \mbox{CBR refresh: } t_{\rm RC} = 125 \ \mu s \\ t_{\rm RAS} \leq 1 \ \mu s, \ \overline{\rm CAS} = V_{\rm IL} \\ \mbox{UWE, } \ \overline{\rm LWE, \ OE} = V_{\rm IH} \end{array}$
Self-refresh mode current (HM51S4170C)	I _{CC11}		1		1	mA	$\label{eq:cmost} \begin{array}{l} \mbox{CMOS interface} \\ \hline \mbox{RAS}, \ \hline \mbox{CAS} \leq 0.2 \ \mbox{V}, \\ \hline \mbox{Dout} = \ \mbox{High-Z} \end{array}$
Self-refresh mode current (HM51S4170CL)	I _{CC11}		200		200	μA	$\frac{CMOS \text{ interface}}{RAS, CAS} \le 0.2 \text{ V},$ Dout = High-Z
Input leakage current	I _{LI}	-10	10	-10	10	μA	$0 \text{ V} \leq \text{Vin} \leq 6.5 \text{ V}$
Output leakage current	ILO	-10	10	-10	10	μΑ	$0 V \le Vout \le 6.5 V$ Dout = disable
Output high voltage	V _{OH}	2.4	V _{cc}	2.4	V _{cc}	V	High lout = -5.0 mA
Output low voltage	V _{OL}	0	0.4	0	0.4	V	Low lout = 4.2 mA

DC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 \text{ V} \pm 10\%$, $V_{SS} = 0 \text{ V}$) (cont)

Notes: 1. I_{cc} depends on output load condition when the device is selected. I_{cc} max is specified at the output open condition.

2. Address can be changed once or less while $\overline{RAS} = V_{\mu}$.

3. Address can be changed once or less while $\overline{CAS} = V_{IH}$.

- 4. $V_{IH} \ge V_{CC} 0.2 \text{ V}, \ 0 \le V_{IL} \le 0.2 \text{ V}, \text{ Address can be changed once or less while } \overline{RAS} = V_{IL}$
- 5. All the V_{cc} pins shall be supplied with the same voltage. And all the V_{ss} pins shall be supplied with the same voltage.

Capacitance (Ta = 25°C, $V_{CC} = 5 V \pm 10\%$)

Parameter	Symbol	Тур	Max	Unit	Notes
Input capacitance (Address)	C _{I1}		5	pF	1
Input capacitance (Clocks)	C _{I2}		7	pF	1
Output capacitance (Data-in, Data-out)	C _{I/O}		10	pF	1, 2

Notes: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method. 2. $\overrightarrow{CAS} = V_{H}$ to disable Dout.

AC Characteristics (Ta = 0 to +70°C, $V_{CC} = 5 V \pm 10\%$, $V_{SS} = 0 V$)^{*1, *14, *15, *17, *18}

Test Conditions

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

- Input rise and fall time: 5 ns
- Input timing reference levels: 0.8 V, 2.4 V
- Input levels: 0 V, 3 V
- Output load: 2 TTL gate + C_L (100 pF) (Including scope and jig)

		HM514170C, HM51S4170C					
		-7		-8			
AS precharge time AS pulse width AS waddress setup time Column address setup time Column address hold time AS to CAS delay time AS to column address delay time AS hold time AS hold time AS to RAS precharge time AS to Din delay time AS setup time from Din AS setup time from Din AS setup time (rise and fall)	Symbol	Min	Max	Min	Мах	Unit	Notes
Random read or write cycle time	t _{RC}	130		150	—	ns	
RAS precharge time	t _{RP}	50		60	_	ns	
RAS pulse width	t _{RAS}	70	10000	80	10000	ns	
CAS pulse width	t _{CAS}	20	10000	20	10000	ns	22
Row address setup time	t _{ASR}	0		0	—	ns	
Row address hold time	t _{RAH}	10		10	_	ns	
Column address setup time	t _{ASC}	0		0	—	ns	
Column address hold time	t _{cah}	15		15	_	ns	
RAS to CAS delay time	t _{RCD}	20	50	20	60	ns	8
RAS to column address delay time	t _{RAD}	15	35	15	40	ns	9
RAS hold time	t _{RSH}	20		20	_	ns	
CAS hold time	t _{csh}	70		80	_	ns	
CAS to RAS precharge time	t _{CRP}	15		15	_	ns	23
OE to Din delay time	t _{odd}	20		20	_	ns	
OE delay time from Din	t _{DZO}	0	_	0	—	ns	
CAS setup time from Din	t _{DZC}	0	_	0	—	ns	
Transition time (rise and fall)	t _T	3	50	3	50	ns	7
Refresh period	t _{REF}	—	16		16	ms	
Refresh period (L-version)	t _{REF}	—	128		128	ms	

Read Cycle

		HM51	4170C,				
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Access time from RAS	t _{RAC}	—	70		80	ns	2, 3
Access time from CAS	t _{CAC}		20		20	ns	3, 4, 13
Access time from address	t _{AA}	—	35		40	ns	3, 5, 13
Access time from OE	t _{OAC}	—	20		20	ns	22
Read command setup time	t _{RCS}	0		0	_	ns	20
Read command hold time to CAS	t _{RCH}	0		0	_	ns	16, 19
Read command hold time to RAS	t _{RRH}	0		0	_	ns	16
Column address to RAS lead time	t _{RAL}	35		40	_	ns	
Output buffer turn-off time	t _{OFF1}	0	15	0	15	ns	6
Output buffer turn-off to OE	t _{OFF2}	0	15	0	15	ns	6
CAS to Din delay time	t _{CDD}	15	_	15	_	ns	

Write Cycle

		HM51	4170C,				
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Write command setup time	t _{wcs}	0	_	0	_	ns	10, 19
Write command hold time	t _{wch}	15	_	15	_	ns	20
Write command pulse width	t _{wP}	10	_	10	_	ns	21
Write command to RAS lead time	t _{RWL}	20		20		ns	21
Write command to CAS lead time	t _{cwL}	20	_	20	_	ns	21
Data-in setup time	t _{DS}	0	_	0	_	ns	11, 21
Data-in hold time	t _{DH}	15		15	—	ns	11, 21
CAS to OE delay time	t _{COD}	—	0		0	ns	22

Read-Modify-Write Cycle

		HM514170C, HM51S4170C					
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Read-modify-write cycle time	t _{RWC}	180	—	200	—	ns	
RAS to WE delay time	t _{RWD}	95	—	105	—	ns	10, 19
CAS to WE delay time	t _{cwD}	45	—	45	—	ns	10, 19
Column address to $\overline{\text{WE}}$ delay time	t _{AWD}	60	—	65	—	ns	10, 19
OE hold time from WE	t _{oeh}	20		20		ns	21

Refresh Cycle

		HM51	4170C,				
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
CAS setup time (CBR refresh cycle)	t _{csr}	10		10		ns	19
CAS hold time (CBR refresh cycle)	t _{CHR}	10		10		ns	20
RAS precharge to CAS hold time	t _{RPC}	10		10		ns	19
CAS precharge time in normal mode	t _{CPN}	10		10		ns	

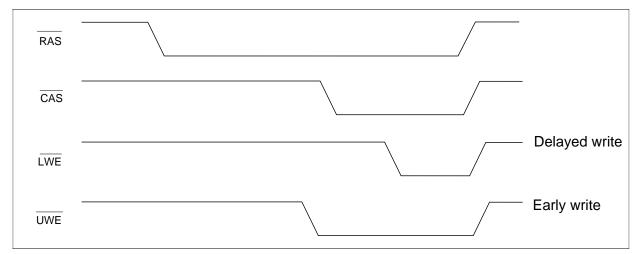
Fast Page Mode Cycle

		HM514170C, HM51S4170C					
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
Fast page mode cycle time	t _{PC}	45		50		ns	
Fast page mode CAS precharge time	t _{CP}	10		10		ns	
Fast page mode RAS pulse width	t _{RASC}		100000	—	100000	ns	12
Access time from CAS precharge	t _{ACP}		40	—	45	ns	3, 13
RAS hold time from CAS precharge	t _{RHCP}	40		45		ns	
Fast page mode read-modify-write cycle \overline{CAS} precharge to \overline{UWE} , \overline{LWE} delay time	t _{CPW}	65		70	_	ns	21
Fast page mode read-modify-write cycle time	t _{PCM}	95		100	_	ns	

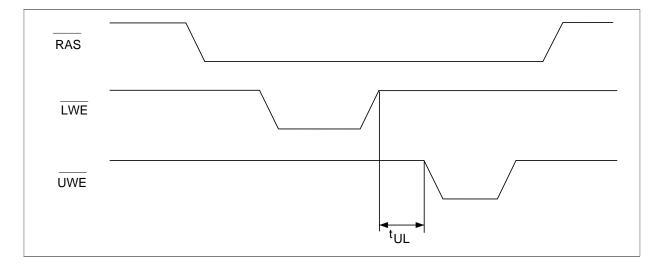
Self refresh Mode

		HM51S4170C					
		-7		-8			
Parameter	Symbol	Min	Max	Min	Max	Unit	Notes
RAS pulse width (self refresh)	t _{RASS}	100		100		μs	23, 24, 25
RAS precharge time (self refresh)	t _{RPS}	130	_	150	_	ns	
CAS hold time (self refresh)	t _{CHS}	-50	_	-50	_	ns	

Notes: 1. AC measurements assume $t_T = 5$ ns.

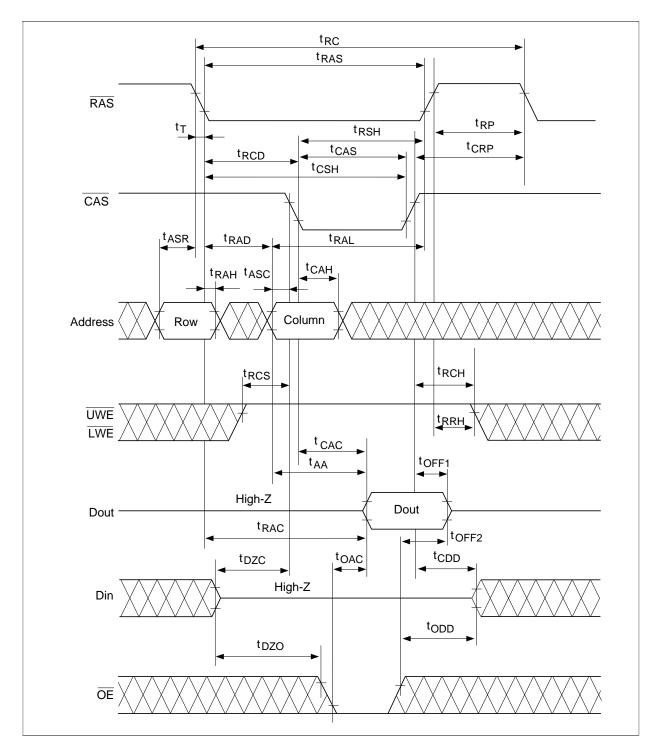

- 2. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max). If t_{RCD} or t_{RAD} is greater than the maximum recommended value shown in this table, t_{RAC} exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2 TTL loads and 100 pF.
- 4. Assumes that $t_{RCD} \ge t_{RCD}$ (max) and $t_{RAD} \le t_{RAD}$ (max).
- 5. Assumes that $t_{RCD} \le t_{RCD}$ (max) and $t_{RAD} \ge t_{RAD}$ (max).
- 6. t_{OFF} (max) defines the time at which the output achieves the open circuit condition and is not referred to output voltage levels.
- 7. V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 8. Operation with the t_{RCD} (max) limit insures that t_{RAC} (max) can be met, t_{RCD} (max) is specified as a reference point only, if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- Operation with the t_{RAD} (max) limit insures that t_{RAC} (max) can be met, t_{RAD} (max) is specified as a reference point only, if t_{RAD} is greater than the specified t_{RAD} (max) limit, then access time is controlled exclusively by t_{AA}.
- 10. t_{WCS} , t_{RWD} , t_{CWD} and t_{AWD} are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only: if $t_{\text{WCS}} \ge t_{\text{WCS}}$ (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if $t_{\text{RWD}} \ge t_{\text{RWD}}$ (min), $t_{\text{CWD}} \ge t_{\text{CWD}}$ (min), $t_{\text{AWD}} \ge t_{\text{AWD}}$ (min) and $t_{\text{CPW}} \ge t_{\text{CPW}}$ (min), the cycle is a read-modifywrite and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referred to CAS leading edge in an early write cycle and to WE leading edge in a delayed write or a read-modify-write cycle.
- 12. t_{RASC} defines \overline{RAS} pulse width in fast page mode cycles.
- 13. Access time is determined by the longer of t_{AA} or t_{CAC} or t_{ACP}
- 14. After power up pause for 100 μs, then DRAM initialization requires a minimum of eight RAS only refresh or eight CAS-before-RAS refresh cycles. If the user will implement CAS-before-RAS timing in their system, then the eight initialization cycles MUST be CAS-before-RAS cycles
- 15. In delayed write or read-modify-write cycles, \overline{OE} must disable output buffer prior to applying data to the device.
- 16. Either t_{RCH} or t_{RRH} must be satisfied for a read cycle.
- 17. The supply voltage with all V_{cc} pins must be on the same level. The supply voltage with all V_{ss} pins must be on the same level.
- 18. A word of data can be written only when UWE and LWE go low at the same time. This implies that early write cycles cannot be combined with delayed write cycles in the same cycles because all data is latched at the fall of the first WE. In other words, staggering the WE signals in one cycle is not permitted.
- 19. t_{RCH} , t_{RRH} , t_{WCS} , t_{RWD} , t_{CWD} and t_{AWD} are determined by the earlier falling edge of \overline{UWE} and \overline{LWE} .
- 20. t_{WCH} and t_{RCS} are determined by the later rising edge of \overline{UWE} or \overline{LWE} .
- 21. t_{WP} , t_{RWL} , t_{CWL} , t_{OEH} , t_{DS} , t_{DH} and t_{CPW} should be satisfied by both $\overline{\text{UWE}}$ and $\overline{\text{LWE}}$.

- 22. When out put buffers are enabled once, sustain the low impedance state until valid data is obtained. When output buffer is turned on and off within a very short time, generally it causes large V_{cc}/V_{ss} line noise, which causes to degrade V_{IH} (min)/ V_{IL} (max) level.
- 23. If you use distributed CBR refresh mode with 15.6 μ s interval in normal read/write cycle, CBR refresh should be executed within 15.6 μ s immediately after exiting from and before entering into self refresh mode.
- 24. If you use RAS only refresh or CBR burst refresh mode in normal read/write cycle, 1024 cycles of distributed CBR refresh with 15.6 μs interval should be executed within 16 ms immediately after exiting from and before entering into the self refresh mode.
- 25. Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self refresh mode, all memory cells need to be refreshed before re-entering the self refresh mode again.
- 26. \blacksquare H or L (H: V_{IH} (min) $\leq V_{IN} \leq V_{IH}$ (max), L: V_{IL} (min) $\leq V_{IN} \leq V_{IL}$ (max)) \blacksquare Invalid Dout

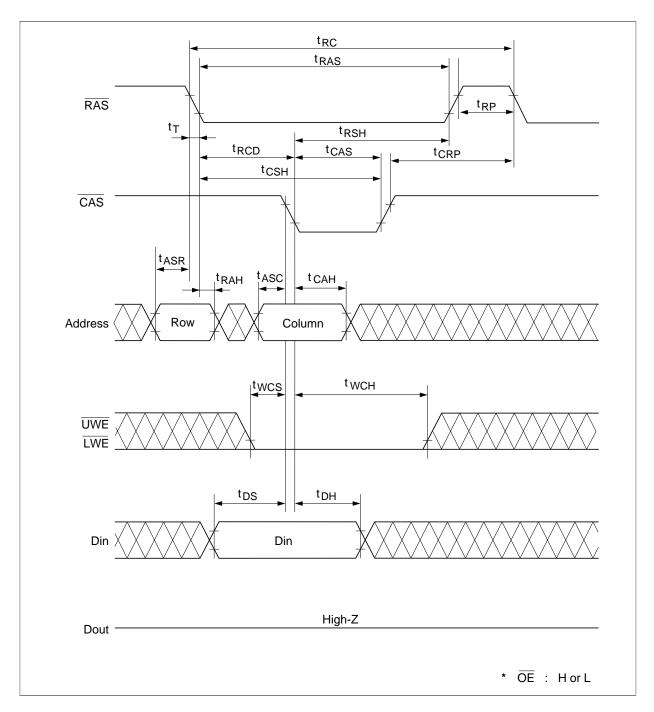

Notes concerning 2WE control

Please do not separate the $\overline{UWE}/\overline{LWE}$ operation timing intentionally. However skew between $\overline{UWE}/\overline{LWE}$ are allowed under the following conditions.

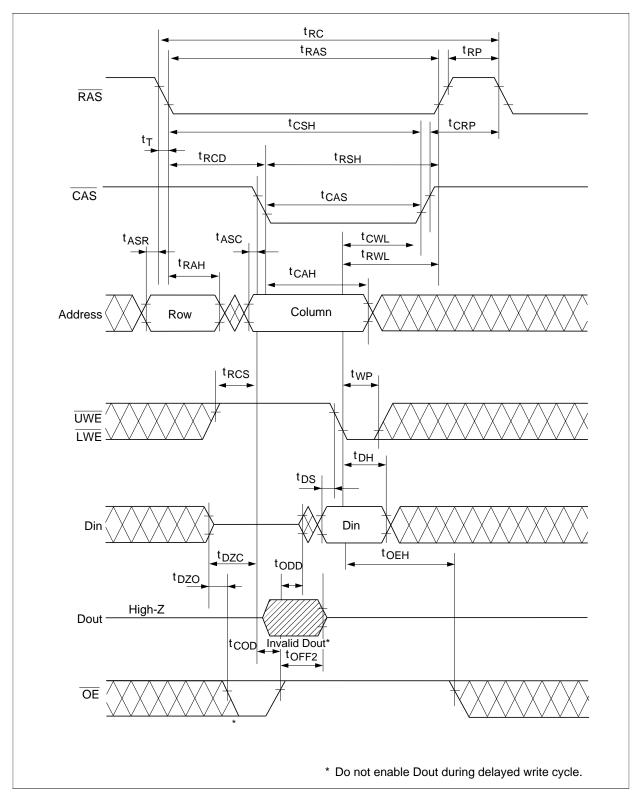
- (1) Each of the $\overline{UWE}/\overline{LWE}$ should satisfy the timing specifications individually.
- (2) Different operation mode for upper/lower byte is not allowed; such as following.

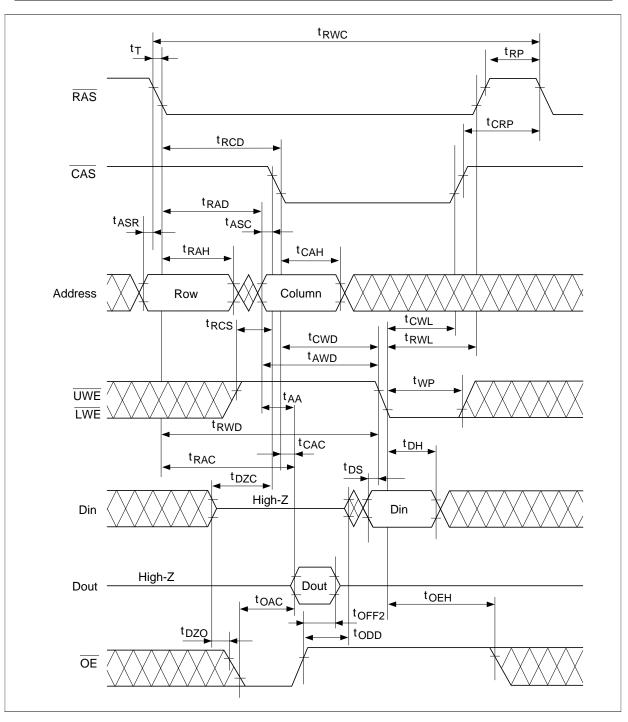


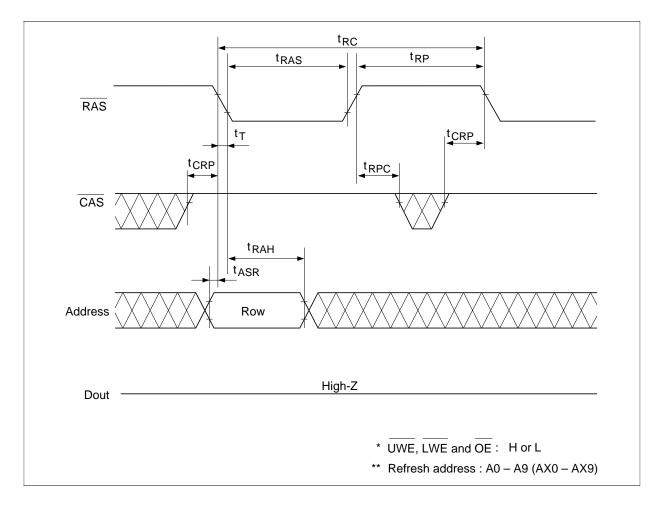
(3) Closely separated upper/lower byte control is not allowed. Unless the condition $(t_{CP} \le t_{UI})$ is satisfied.

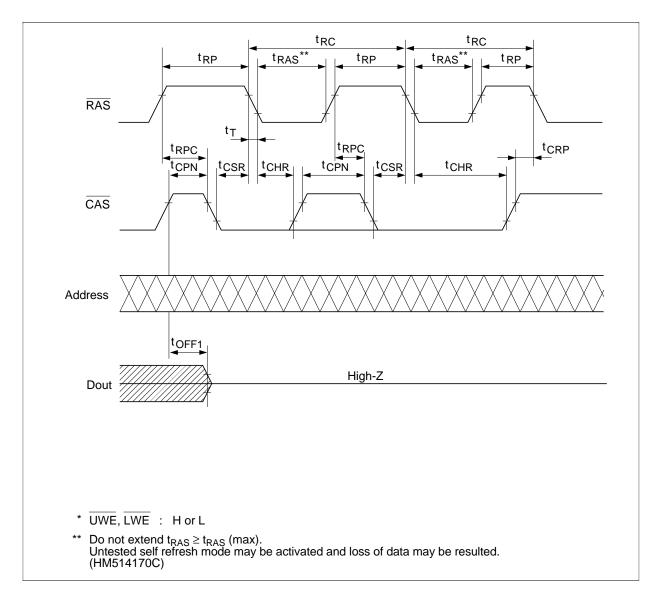


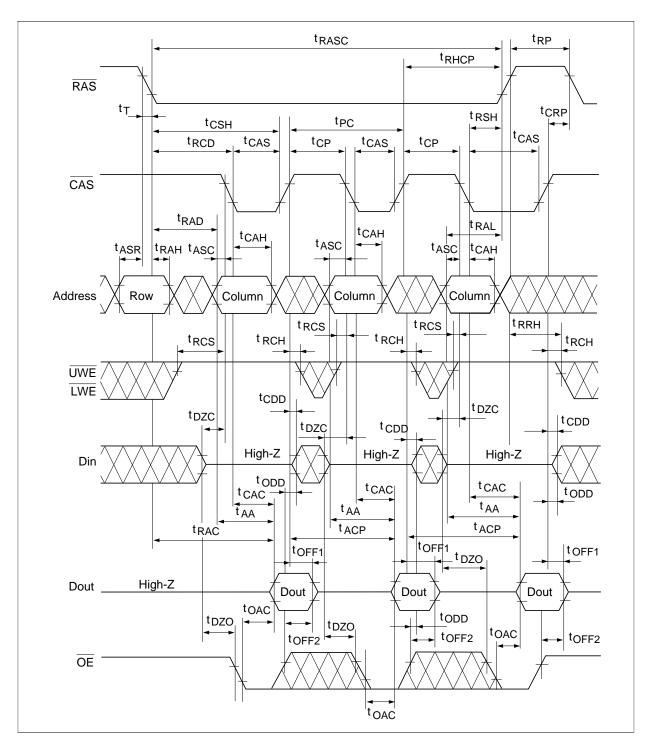
Timing Waveforms *26

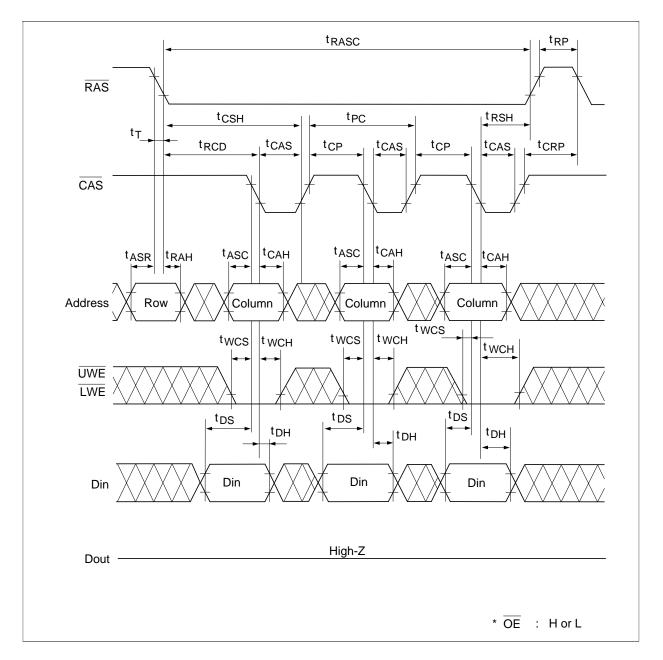

Read Cycle

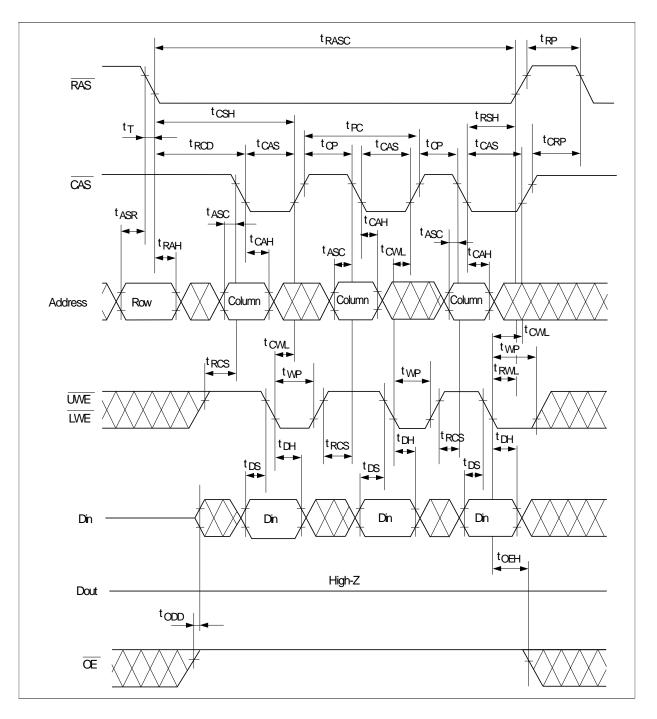

Early Write Cycle

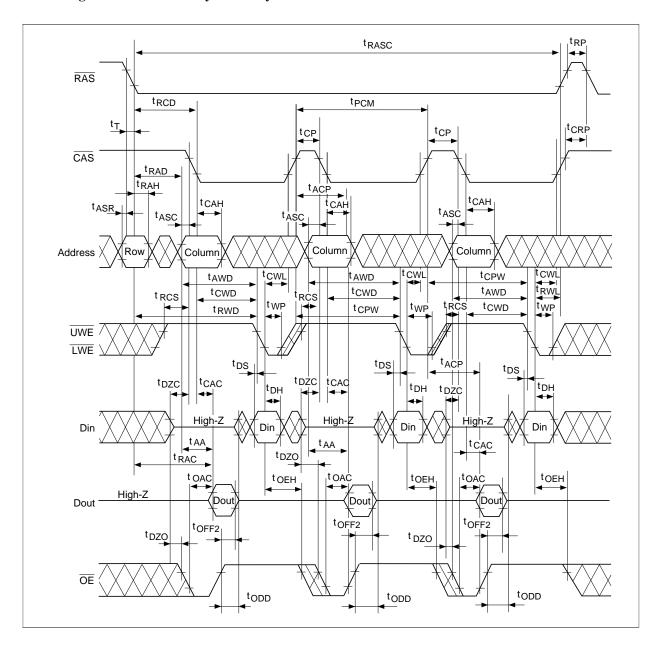

Delayed Write Cycle


Read-Modify-Write Cycle

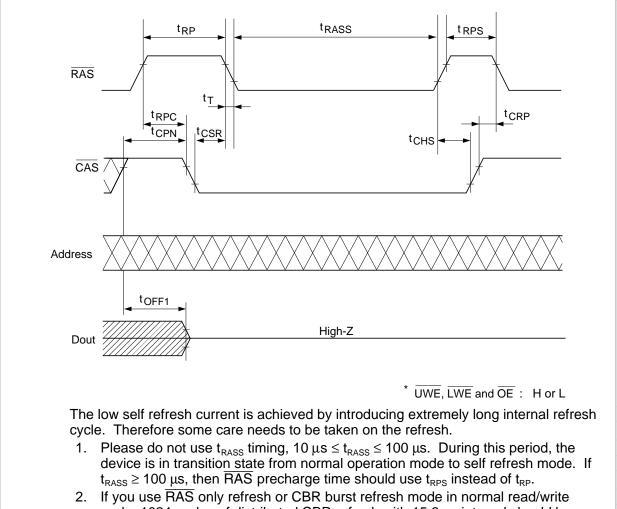

RAS-Only Refresh Cycle


CAS-Before-**RAS** Refresh Cycle


Fast Page Mode Read Cycle

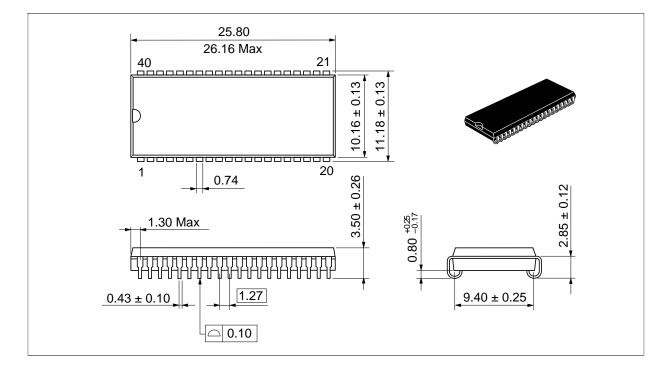


Fast Page Mode Early Write Cycle


Fast Page Mode Delayed Write Cycle

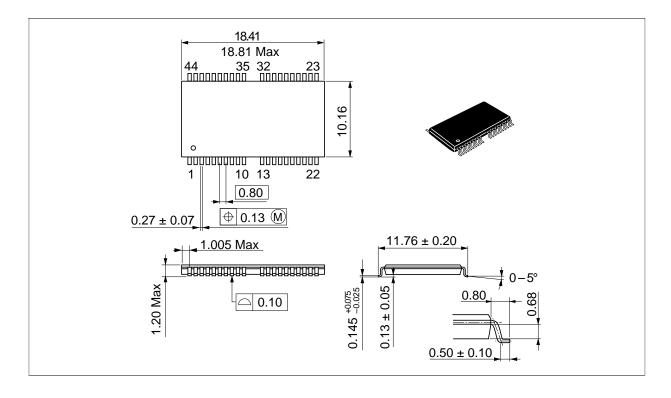
Fast Page Mode Read-Modify-Write Cycle

Self Refresh Cycle



- cycle, 1024 cycles of distributed CBR refresh with 15.6 μs interval should be executed within 16 ms immediately after exiting from and before entering into the self refresh mode.
- If you use distributed CBR refresh mode with 15.6 μs interval in normal read/write cycle, CBR refresh should be executed within 15.6 μs immediately after exiting from and before entering into self refresh mode.
- 4. Repetitive self refresh mode without refreshing all memory is not allowed. Once you exit from self-refresh mode, all memory cells need to be refreshed before reentering the self refresh mode again.

Package Dimensions


HM51(S)4170CJ/CLJ Series (CP-40DA)

Unit: mm

HM51(S)4170CTT/CLTT Series (TTP-44/40DB)

