Dual 8-input Multiplexers

The HD100163 is a dual 8 -input Multiplexer. The Data Select(Sn) inputs determine which bit (An and Bn) will be presented at the Outputs $\left(Z_{A}\right.$ and Z_{B} respectively). The same bit $(0-7)$ will be selected for both the Z_{A} and Z_{B} output.

PIN ARRANGEMENT

- HD100163

- HD100163F

! Top View
- LOGIC DIAGRAM

- TRUTH TABLE

Input											Output
Address			Data								
S :	S	So	$\begin{aligned} & \mathrm{A} ; \\ & \mathrm{B} ; \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{6} \\ & \mathbf{B}_{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{5} \\ & B_{5} \\ & \hline \end{aligned}$	$\begin{aligned} & A_{1} \\ & B_{1} \end{aligned}$	$\begin{aligned} & \hline \mathrm{A}_{3} \\ & \mathrm{~B}_{3} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{2} \\ & \mathbf{B}_{2} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{1} \\ & \mathbf{B}_{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{A}_{0} \\ & B_{0} \end{aligned}$	
	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\times	${ }_{\mathrm{H}}^{\mathrm{L}}$	L						
L	$\stackrel{L}{\mathrm{~L}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	\times	\times	\times	\times	\times	\times	$\begin{gathered} - \\ \underset{H}{\mathrm{H}} \\ \hline \end{gathered}$	\times	${ }_{\mathrm{H}}^{\mathrm{L}}$
$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	\times	\times	\times	\times	\times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\times	\times	L
I	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	\times	\times	\times	\times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\times	\times	\times	${ }_{\mathrm{L}}^{\mathrm{L}}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	\times	\times	\times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\times	\times	\times	\times	L H
$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	\times	\times	$\begin{aligned} & \mathrm{L} \\ & \mathbf{H} \end{aligned}$	\times	\times	\times	\times	\times	$\stackrel{\mathrm{L}}{\mathrm{L}}$
$\begin{array}{r} \mathrm{H} \\ \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \hline \mathrm{L} \\ & \mathrm{~L} \\ & \hline \end{aligned}$	\times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$	\times	\times	\times	\times	\times	\times	$\stackrel{\mathrm{L}}{\mathrm{L}}$
$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{H} \\ \mathrm{H} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	\times	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \hline \end{aligned}$						

IDC CHARACTERISTICS ($V_{\text {EF: }}=-4.2 \mathrm{to}-4.8 \mathrm{~V}, V_{C C}=V_{C C A}=\mathrm{GND}, T a=0$ to $\left.+85^{\circ} \mathrm{C}\right)$

Item	Symbol	Fest Condition		min	typ	max	Unit
Supply Current	1\%	All input open		76	109	153	mA
			S_{n} input			265	$\mu \mathrm{A}$
Input Current	I'17	lis lillma	$\mathrm{A}_{n}, \mathrm{~B}_{3}$ input			340	$\mu \mathrm{A}$

Sote' As for wher them, refer to the "Comman $1 \times$ Characteristics"

AC CHARACTERISTICS $\left(V_{E E}=-2.2\right.$ to $\left.-2.8 \mathrm{~V}, V_{C C}=V_{C C A}=2.0 \mathrm{~V}\right)$ - HD100163

Item	Symbol	Test Condition		0		$25^{\circ}{ }^{\circ}$			$85^{\circ} \mathrm{C}$		Unit
				min	max	min	typ	max	min	max	
Propagation	trin. trint	See test circuit and waveform	$\mathrm{A}_{11}, \mathrm{~B}_{n}$ input to out put	0.60	1.30	0.60	0.95	1.40	0.60	1.40	ns
Delay Time			$S_{\text {n }}$ input to output	1.25	2.45	1.30	1.75	2.50	1.30	2.50	
Transition Time	trim. 1 mm			0.55	1.70	0.55	1.20	1.70	0.55	1.70	ns

- HD100163F

Item	Symbol	Test Condition		$0^{\circ}{ }^{\circ}$		$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$		Unit
				min	max	min	typ	max	min	max	
Propagation Delay Time	IV.A. thent	See test circuit and waveform	$\mathrm{A}_{n}, \mathrm{~B}_{\mathrm{n}}$ input to output	0.70	1.40	0.80	0.95	1.50	0.80	1.50	ns
			S_{n} input to output	1.30	2.40	1.40	1.75	2.50	1.40	2.50	
Transition Time	trih, tTH.			0.55	1.60	0.55	1.10	1.60	0.55	1.60	ns

Note) The circuits in a test socket or mounted on a printed circuit board and (ransverse air flow greater than 2.5 m s (500 linear fpm) is maintained.

