

100-Pin TQFP Commercial Temp Industrial Temp

512K x 18, 256K x 32, 256K x 36 9Mb Sync Burst SRAMs

250 MHz-150 MHz 2.5 V or 3.3 V V_{DD} 2.5 V or 3.3 V I/O

Features

- FT pin for user-configurable flow through or pipeline operation
- Dual Cycle Deselect (DCD) operation
- 2.5 V or 3.3 V + 10% / -10% core power supply
- 2.5 V or 3.3 V I/O supply
- LBO pin for Linear or Interleaved Burst mode
- Internal input resistors on mode pins allow floating mode pins
- Default to Interleaved Pipeline mode
- Byte Write (\overline{BW}) and/or Global Write (\overline{GW}) operation
- Internal self-timed write cycle
- Automatic power-down for portable applications
- JEDEC-standard 100-lead TQFP package
- RoHS-compliant 100-lead TQFP package available

Functional Description

Applications

The GS880E18/32/36BT is a 9,437,184-bit (8,388,608-bit for x32 version) high performance synchronous SRAM with a 2-bit burst address counter. Although of a type originally developed for Level 2 Cache applications supporting high performance CPUs, the device now finds application in synchronous SRAM applications, ranging from DSP main store to networking chip set support.

Controls

Addresses, data I/Os, chip enables $(\overline{E1}, E2, \overline{E3})$, address burst control inputs $(\overline{ADSP}, \overline{ADSC}, \overline{ADV})$, and write control inputs $(\overline{Bx}, \overline{BW}, \overline{GW})$ are synchronous and are controlled by a positive-edge-triggered clock input (CK). Output enable (\overline{G}) and power down control (ZZ) are asynchronous inputs. Burst cycles can be initiated with either \overline{ADSP} or \overline{ADSC} inputs. In Burst mode, subsequent burst addresses are generated internally and are controlled by \overline{ADV} . The burst address counter may be configured to count in either linear or interleave order with the Linear Burst Order (\overline{LBO}) input. The Burst function need not be used. New addresses can be loaded on every cycle with no degradation of chip performance.

Flow Through/Pipeline Reads

The function of the Data Output register can be controlled by the user via the \overline{FT} mode pin (Pin 14). Holding the \overline{FT} mode pin low places the RAM in Flow Through mode, causing output data to bypass the Data Output Register. Holding \overline{FT} high places the RAM in Pipeline mode, activating the rising-edge-triggered Data Output Register.

DCD Pipelined Reads

The GS880E18/32/36BT is a DCD (Dual Cycle Deselect) pipelined synchronous SRAM. SCD (Single Cycle Deselect) versions are also available. DCD SRAMs pipeline disable commands to the same degree as read commands. DCD RAMs hold the deselect command for one full cycle and then begin turning off their outputs just after the second rising edge of clock.

Byte Write and Global Write

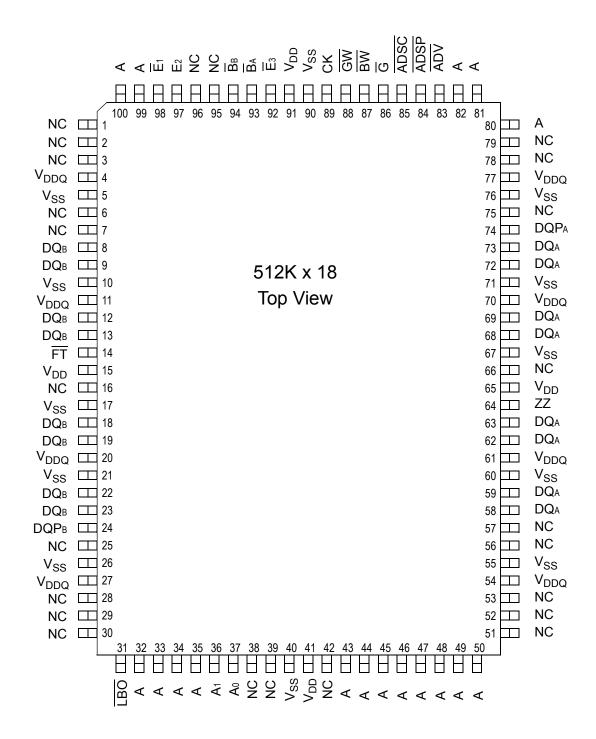
Byte write operation is performed by using Byte Write enable (\overline{BW}) input combined with one or more individual byte write signals (\overline{Bx}) . In addition, Global Write (\overline{GW}) is available for writing all bytes at one time, regardless of the Byte Write control inputs.

Sleep Mode

Low power (Sleep mode) is attained through the assertion (High) of the ZZ signal, or by stopping the clock (CK). Memory data is retained during Sleep mode.

Core and Interface Voltages

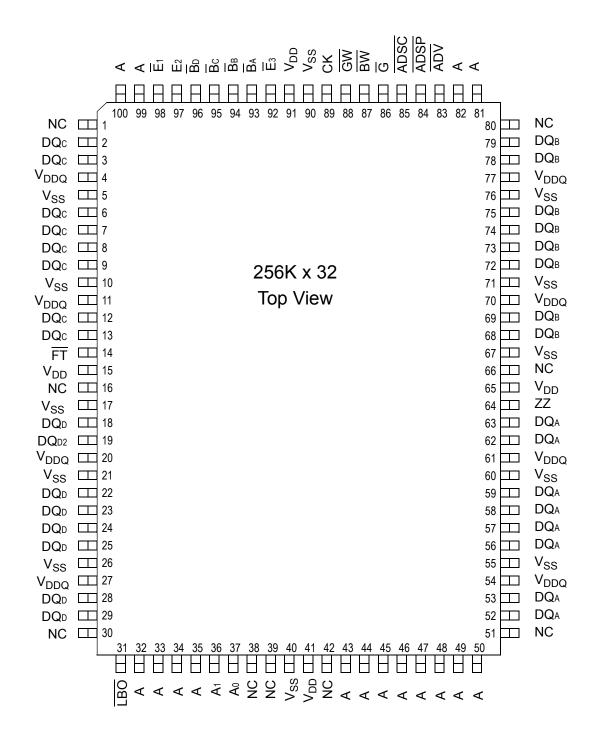
The GS880E18/32/36BT operates on a 2.5 V or 3.3 V power supply. All input are 3.3 V and 2.5 V compatible. Separate output power (V_{DDQ}) pins are used to decouple output noise from the internal circuits and are 3.3 V and 2.5 V compatible.


Paramter Synopsis

	-333	-300	-250	-200	-150	Unit
t _{KO}	2.5	2.5	2.5	3.0	3.8	ns
tCycle	3.0	3.3	4.0	5.0	6.7	ns
Curr (x18)	250	230	200	170	140	mA
Curr (x32/x36)	290	265	230	195	160	mA
t _{KQ}	4.5	5.0	5.5	6.5	7.5	ns
tCycle	4.5	5.0	5.5	6.5	7.5	ns
Curr (x18)	200	185	160	140	128	mA
Curr (x32/x36)	230	210	185	160	145	mA
	Curr (x18) Curr (x32/x36) tkQ tCycle Curr (x18)	t _{KQ} 2.5 tCycle 3.0 Curr (x18) 250 Curr (x32/x36) 290 t _{KQ} 4.5 tCycle 4.5 Curr (x18) 200	t _{KQ} 2.5 2.5 tCycle 3.0 3.3 Curr (x18) 250 230 Curr (x32/x36) 290 265 t _{KQ} 4.5 5.0 tCycle 4.5 5.0 Curr (x18) 200 185	t _{KQ} 2.5 2.5 2.5 tCycle 3.0 3.3 4.0 Curr (x18) 250 230 200 Curr (x32/x36) 290 265 230 t _{KQ} 4.5 5.0 5.5 tCycle 4.5 5.0 5.5 Curr (x18) 200 185 160	t _{KQ} 2.5 2.5 2.5 3.0 tCycle 3.0 3.3 4.0 5.0 Curr (x18) 250 230 200 170 Curr (x32/x36) 290 265 230 195 t _{KQ} 4.5 5.0 5.5 6.5 tCycle 4.5 5.0 5.5 6.5 Curr (x18) 200 185 160 140	t _{KQ} 2.5 2.5 2.5 2.5 3.0 3.8 tCycle 3.0 3.3 4.0 5.0 6.7 Curr (x18) 250 230 200 170 140 Curr (x32/x36) 290 265 230 195 160 t _{KQ} 4.5 5.0 5.5 6.5 7.5 tCycle 4.5 5.0 5.5 6.5 7.5 Curr (x18) 200 185 160 140 128

Rev: 1.04 6/2007 1/23 © 2001, GSI Technology

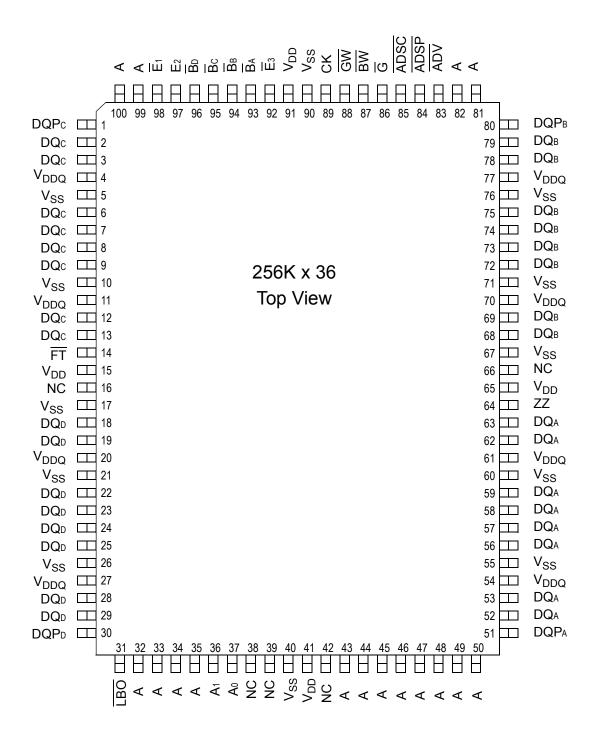
GS880E18B 100-Pin TQFP Pinout (Package T)



Note:

Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating.

GS880E32B 100-Pin TQFP Pinout (Package T)



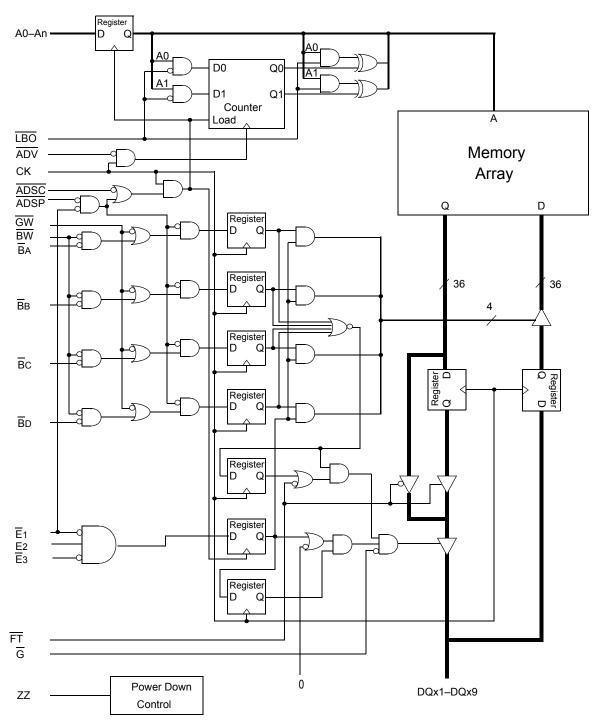
Note:

Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating.

GS880E36B 100-Pin TQFP Pinout (Package T)

Note:

Pins marked with NC can be tied to either VDD or VSS. These pins can also be left floating.



TQFP Pin Description

Symbol	Туре	Description
A0, A1	I	Address field LSBs and Address Counter preset Inputs
A	I	Address Inputs
DQA DQB DQc DQD	1/0	Data Input and Output pins
NC	_	No Connect
BW	I	Byte Write—Writes all enabled bytes; active low
Ba, Bb, Bc, Bd	I	Byte Write Enable for DQA, DQB Data I/Os; active low
CK	I	Clock Input Signal; active high
GW	I	Global Write Enable—Writes all bytes; active low
E1, E3	I	Chip Enable; active low
E ₂	I	Chip Enable; active high
G	I	Output Enable; active low
ADV	I	Burst address counter advance enable; active low
ADSP, ADSC	I	Address Strobe (Processor, Cache Controller); active low
ZZ	I	Sleep Mode control; active high
FT	I	Flow Through or Pipeline mode; active low
LBO	I	Linear Burst Order mode; active low
V _{DD}	I	Core power supply
V _{SS}	I	I/O and Core Ground
V_{DDQ}	I	Output driver power supply

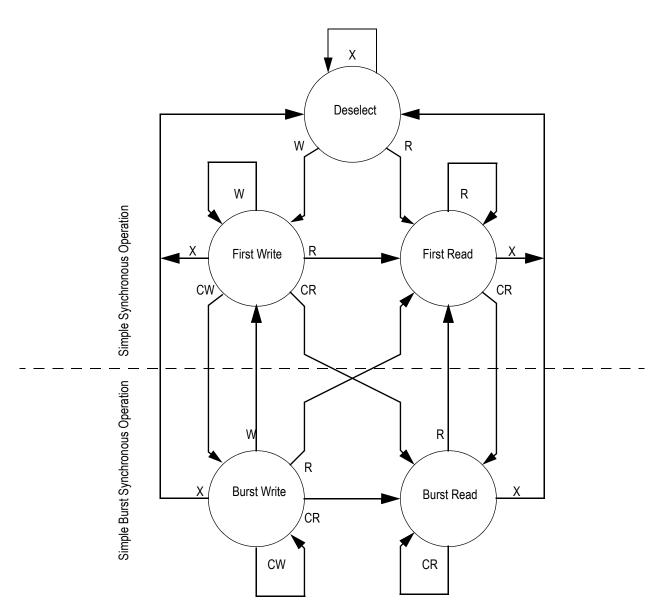
GS880E18/32/36B Block Diagram

Note: Only x36 version shown for simplicity.

Byte Write Truth Table

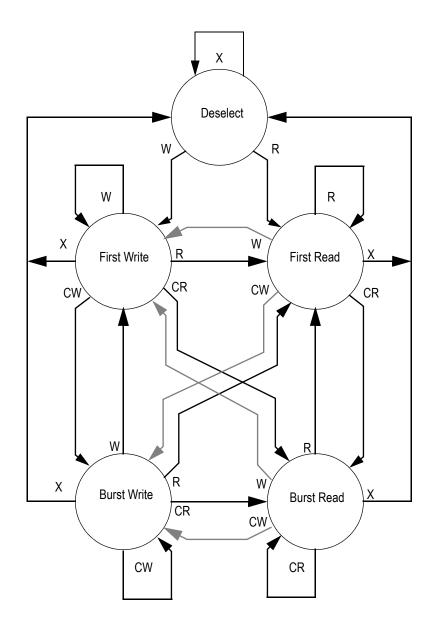
Function	GW	BW	Ва	Вв	Вс	BD	Notes
Read	Н	Н	Х	Х	Х	Х	1
Write No Bytes	Н	L	Н	Н	Н	Н	1
Write byte a	Н	L	L	Н	Н	Н	2, 3
Write byte b	Н	L	Н	L	Н	Н	2, 3
Write byte c	Н	L	Н	Н	L	Н	2, 3, 4
Write byte d	Н	L	Н	Н	Н	L	2, 3, 4
Write all bytes	Н	L	L	L	L	L	2, 3, 4
Write all bytes	L	Х	Х	Х	Х	Х	

- 1. All byte outputs are active in read cycles regardless of the state of Byte Write Enable inputs, \overline{BA} , \overline{BB} , \overline{BC} and/or \overline{BD} .
- 2. Byte Write Enable inputs BA, BB, BC and/or BD may be used in any combination with BW to write single or multiple bytes.
- 3. All byte I/Os remain High-Z during all write operations regardless of the state of Byte Write Enable inputs.
- 4. Bytes "C" and "D" are only available on the x32 and x36 versions.


Synchronous Truth Table

Operation	Address Used	State Diagram Key	E ₁	E2	E ₃	ADSP	ADSC	ADV	w	DQ ³
Deselect Cycle, Power Down	None	Х	L	Х	Н	Х	L	Х	Х	High-Z
Deselect Cycle, Power Down	None	Х	Ы	L	X	X	L	X	X	High-Z
Deselect Cycle, Power Down	None	Х	L	Χ	Н	L	X	X	X	High-Z
Deselect Cycle, Power Down	None	Х	L	L	X	L	X	X	X	High-Z
Deselect Cycle, Power Down	None	Х	Н	Χ	Χ	X	L	X	X	High-Z
Read Cycle, Begin Burst	External	R	L	Н	L	L	Х	Х	Х	Q
Read Cycle, Begin Burst	External	R	L	Н	L	Н	L	Χ	F	Q
Write Cycle, Begin Burst	External	W	L	Н	L	Н	L	Х	T	D
Read Cycle, Continue Burst	Next	CR	Χ	Χ	Χ	Н	Н	L	F	Q
Read Cycle, Continue Burst	Next	CR	Н	Х	Χ	Х	Н	L	F	Q
Write Cycle, Continue Burst	Next	CW	Χ	Χ	Χ	Н	Н	L	Т	D
Write Cycle, Continue Burst	Next	CW	Н	Х	Χ	Х	Н	L	T	D
Read Cycle, Suspend Burst	Current		Χ	Х	Χ	Н	Н	Н	F	Q
Read Cycle, Suspend Burst	Current		Н	Х	Χ	Χ	Н	Н	F	Q
Write Cycle, Suspend Burst	Current		Χ	Х	Х	Н	Н	Н	Т	D
Write Cycle, Suspend Burst	Current		Н	Χ	Χ	Х	Н	Н	Т	D

- 1. X = Don't Care, H = High, L = Low
- 2. E = T (True) if $E_2 = 1$ and $\overline{E}_1 = \overline{E}_3 = 0$; E = F (False) if $E_2 = 0$ or $\overline{E}_1 = 1$ or $\overline{E}_3 = 1$
- 3. W = T (True) and F (False) is defined in the Byte Write Truth Table preceding.
- 4. \overline{G} is an asynchronous input. \overline{G} can be driven high at any time to disable active output drivers. \overline{G} low can only enable active drivers (shown as "Q" in the Truth Table above).
- 5. All input combinations shown above are tested and supported. Input combinations shown in gray boxes need not be used to accomplish basic synchronous or synchronous burst operations and may be avoided for simplicity.
- 6. Tying ADSP high and ADSC low allows simple non-burst synchronous operations. See **BOLD** items above.
- 7. Tying ADSP high and ADV low while using ADSC to load new addresses allows simple burst operations. See ITALIC items above.


Simplified State Diagram

- The diagram shows only supported (tested) synchronous state transitions. The diagram presumes \overline{G} is tied low. The upper portion of the diagram assumes active use of only the Enable ($\overline{E1}$, E2, and $\overline{E3}$) and Write (\overline{BA} , \overline{BB} , \overline{BC} , \overline{BD} , \overline{BW} , and \overline{GW}) control inputs, and that $\overline{\mathsf{ADSP}}$ is tied high and $\overline{\mathsf{ADSC}}$ is tied low.
- The upper and lower portions of the diagram together assume active use of only the Enable, Write, and ADSC control inputs, and 3. assumes ADSP is tied high and ADV is tied low.

Simplified State Diagram with G

- 1. The diagram shows supported (tested) synchronous state transitions plus supported transitions that depend upon the use of \overline{G} .
- 2. Use of "Dummy Reads" (Read Cycles with G High) may be used to make the transition from Read cycles to Write cycles without passing through a Deselect cycle. Dummy Read cycles increment the address counter just like normal read cycles.
- 3. Transitions shown in gray tone assume \overline{G} has been pulsed high long enough to turn the RAM's drivers off and for incoming data to meet Data Input Set Up Time.

Absolute Maximum Ratings

(All voltages reference to $V_{\rm SS}$)

Symbol	Description	Value	Unit
V _{DD}	Voltage on V _{DD} Pins	-0.5 to 4.6	V
V _{DDQ}	Voltage in V _{DDQ} Pins	-0.5 to 4.6	V
V _{I/O}	Voltage on I/O Pins	$-0.5 \text{ to V}_{DDQ} + 0.5 \ (\le 4.6 \text{ V max.})$	V
V _{IN}	Voltage on Other Input Pins	$-0.5 \text{ to V}_{DD} + 0.5 \ (\leq 4.6 \text{ V max.})$	V
I _{IN}	Input Current on Any Pin	+/20	mA
I _{OUT}	Output Current on Any I/O Pin	+/20	mA
P_{D}	Package Power Dissipation	1.5	W
T _{STG}	Storage Temperature	-55 to 125	°C
T _{BIAS}	Temperature Under Bias	-55 to 125	°C

Note:

Permanent damage to the device may occur if the Absolute Maximum Ratings are exceeded. Operation should be restricted to Recommended Operating Conditions. Exposure to conditions exceeding the Absolute Maximum Ratings, for an extended period of time, may affect reliability of this component.

Power Supply Voltage Ranges

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
3.3 V Supply Voltage	V _{DD3}	3.0	3.3	3.6	V	
2.5 V Supply Voltage	V _{DD2}	2.3	2.5	2.7	V	
3.3 V V _{DDQ} I/O Supply Voltage	V _{DDQ3}	3.0	3.3	3.6	V	
2.5 V V _{DDQ} I/O Supply Voltage	V _{DDQ2}	2.3	2.5	2.7	V	

- The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.

V_{DDQ3} Range Logic Levels

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
V _{DD} Input High Voltage	V _{IH}	2.0	_	V _{DD} + 0.3	V	1
V _{DD} Input Low Voltage	V _{IL}	-0.3	_	0.8	V	1
V _{DDQ} I/O Input High Voltage	V _{IHQ}	2.0	_	V _{DDQ} + 0.3	V	1,3
V _{DDQ} I/O Input Low Voltage	V _{ILQ}	-0.3	_	0.8	V	1,3

Notes:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
- 3. V_{IHO} (max) is voltage on V_{DDO} pins plus 0.3 V.

V_{DDQ2} Range Logic Levels

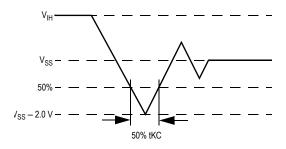
Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
V _{DD} Input High Voltage	V _{IH}	0.6*V _{DD}	_	V _{DD} + 0.3	V	1
V _{DD} Input Low Voltage	V _{IL}	-0.3	_	0.3*V _{DD}	V	1
V _{DDQ} I/O Input High Voltage	V_{IHQ}	0.6*V _{DD}	_	V _{DDQ} + 0.3	V	1,3
V _{DDQ} I/O Input Low Voltage	V _{ILQ}	-0.3	_	0.3*V _{DD}	V	1,3

Notes:

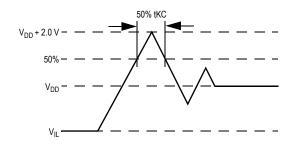
- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be -2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.
- 3. V_{IHO} (max) is voltage on V_{DDO} pins plus 0.3 V.

Recommended Operating Temperatures

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Ambient Temperature (Commercial Range Versions)	T _A	0	25	70	°C	2
Ambient Temperature (Industrial Range Versions)	T _A	– 40	25	85	°C	2


Notes:

- 1. The part numbers of Industrial Temperature Range versions end the character "I". Unless otherwise noted, all performance specifications quoted are evaluated for worst case in the temperature range marked on the device.
- 2. Input Under/overshoot voltage must be −2 V > Vi < V_{DDn}+2 V not to exceed 4.6 V maximum, with a pulse width not to exceed 20% tKC.


Rev: 1.04 6/2007 12/23 © 2001, GSI Technology

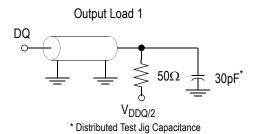
Undershoot Measurement and Timing

Overshoot Measurement and Timing

Capacitance

$$(T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{DD} = 2.5 \text{ V})$$

Parameter	Symbol	Test conditions	Тур.	Max.	Unit
Input Capacitance	C _{IN}	V _{IN} = 0 V	4	5	pF
Input/Output Capacitance	C _{I/O}	V _{OUT} = 0 V	6	7	pF


Note:

These parameters are sample tested.

AC Test Conditions

Parameter	Conditions
Input high level	V _{DD} – 0.2 V
Input low level	0.2 V
Input slew rate	1 V/ns
Input reference level	V _{DD} /2
Output reference level	V _{DDQ} /2
Output load	Fig. 1

- 1. Include scope and jig capacitance.
- 2. Test conditions as specified with output loading as shown in **Fig. 1** unless otherwise noted.
- 3. Device is deselected as defined by the Truth Table.

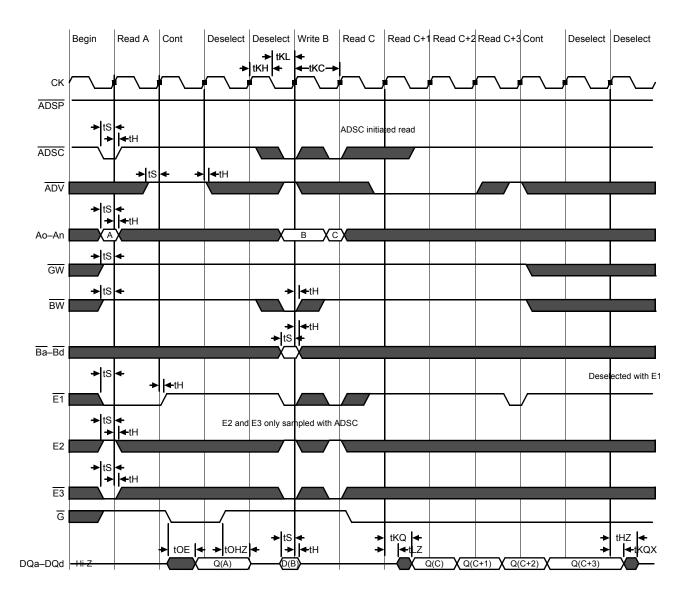
DC Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Max
Input Leakage Current (except mode pins)	I _{IL}	V _{IN} = 0 to V _{DD}	–1 uA	1 uA
ZZ Input Current	I _{IN1}	$V_{DD} \ge V_{IN} \ge V_{IH}$ $0 \ V \le V_{IN} \le V_{IH}$	–1 uA –1 uA	1 uA 100 uA
FT, ZQ Input Current	I _{IN2}	$\begin{aligned} V_{DD} &\geq V_{IN} \geq V_{IL} \\ 0 \ V &\leq V_{IN} \leq V_{IL} \end{aligned}$	–100 uA –1 uA	1 uA 1 uA
Output Leakage Current	I _{OL}	Output Disable, V _{OUT} = 0 to V _{DD}	−1 uA	1 uA
Output High Voltage	V _{OH2}	$I_{OH} = -8 \text{ mA}, V_{DDQ} = 2.375 \text{ V}$	1.7 V	_
Output High Voltage	V _{OH3}	$I_{OH} = -8 \text{ mA}, V_{DDQ} = 3.135 \text{ V}$	2.4 V	_
Output Low Voltage	V _{OL}	I _{OL} = 8 mA		0.4 V

Operating Currents

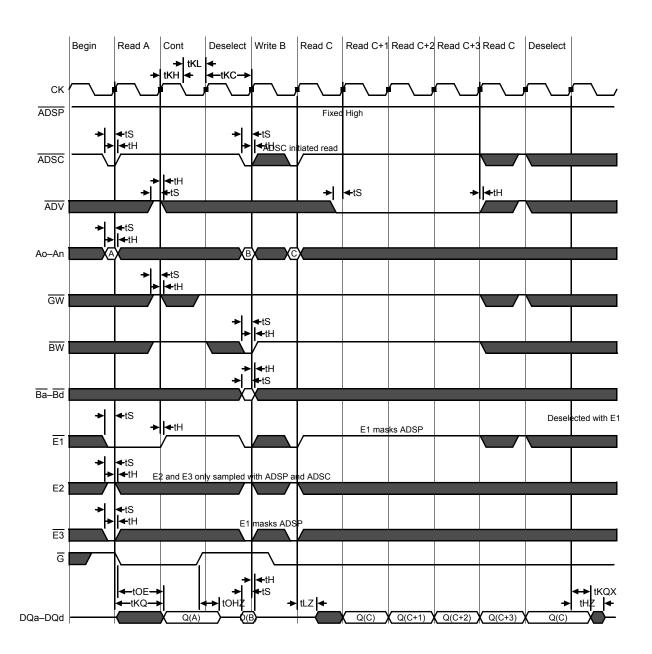
		Mode			-333		-3	00	-2	50	-200		-1	50	
Parameter	Test Conditions			Symbol	0 to 70°C	-40 to 85°C	Unit								
Operating Current	Device Selected; All other inputs $\geq V_{IH}$ or $\leq V_{IL}$ Output open	(x32/ x36)	Pipeline	I _{DD} I _{DDQ}	250 40	270 40	230 35	250 35	200 30	220 30	170 25	190 25	140 20	160 20	mA
			Flow Through	I _{DD} I _{DDQ}	205 25	225 25	185 25	205 25	160 25	180 25	140 20	160 20	130 15	150 15	mA
		(x18)	Pipeline	I _{DD} I _{DDQ}	230 20	250 20	210 20	230 20	185 15	205 15	155 15	175 15	130 10	150 10	mA
			Flow Through	I _{DD} I _{DDQ}	185 15	205 15	170 15	190 15	145 15	165 15	130 10	150 10	120 8	140 8	mA
Standby	$ZZ \ge V_{DD} - 0.2 V$	2 V	Pipeline	I _{SB}	40	50	40	50	40	50	40	50	40	50	mA
Current			Flow Through	I _{SB}	40	50	40	50	40	50	40	50	40	50	mA
Deselect Current	$\label{eq:decomposition} \begin{split} & \text{Device Deselected;} \\ & \text{All other inputs} \\ & \geq V_{IH} \text{ or } \leq V_{IL} \end{split}$		Pipeline	I _{DD}	95	100	90	95	85	90	75	80	60	65	mA
			_	Flow Through	I _{DD}	65	60	60	65	60	65	50	55	50	55

- 1. I_{DD} and I_{DDQ} apply to any combination of V_{DD3} , V_{DD2} , V_{DDQ3} , and V_{DDQ2} operation.
- 2. All parameters listed are worst case scenario.


AC Electrical Characteristics

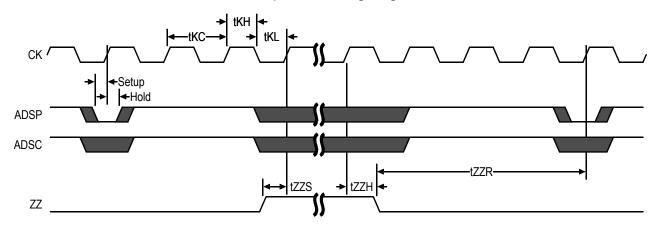
	Parameter	Symbol	-33	33	-30	00	-25	50	-20	00	-1	50	Unit
	raiailletei	Syllibol	Min	Max									
	Clock Cycle Time	tKC	3.0	_	3.3	_	4.0	_	5.0	_	6.7	_	ns
	Clock to Output Valid	tKQ	_	2.5	_	2.5	_	2.5	_	3.0	_	3.8	ns
Dinalina	Clock to Output Invalid	tKQX	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
Pipeline	Clock to Output in Low-Z	tLZ ¹	1.5	_	1.5	_	1.5	_	1.5	_	1.5	_	ns
	Setup time	tS	1.0	_	1.0	_	1.2	_	1.4	_	1.5	_	ns
	Hold time	tH	0.1	_	0.1	_	0.2	_	0.4	_	0.5	_	ns
	Clock Cycle Time	tKC	4.5	_	5.0	_	5.5	_	6.5	_	7.5	_	ns
	Clock to Output Valid	tKQ	_	4.5		5.0	_	5.5	1	6.5	_	7.5	ns
Flow	Clock to Output Invalid	tKQX	2.0		2.0	_	2.0	_	2.0	_	2.0	_	ns
Through	Clock to Output in Low-Z	tLZ ¹	2.0	_	2.0	_	2.0	_	2.0	_	2.0	_	ns
	Setup time	tS	1.3	_	1.4	_	1.5	_	1.5	_	1.5	_	ns
	Hold time	tH	0.3	_	0.4	_	0.5	_	0.5	_	0.5	_	ns
	Clock HIGH Time	tKH	1.0	_	1.0	_	1.3	_	1.3	_	1.5	_	ns
	Clock LOW Time	tKL	1.2	_	1.2	_	1.5	_	1.5	_	1.7	_	ns
	Clock to Output in High-Z	tHZ ¹	1.5	2.5	1.5	2.5	1.5	2.5	1.5	3.0	1.5	3.0	ns
	G to Output Valid	tOE	_	2.5	_	2.5	_	2.5	_	3.0	_	3.8	ns
	G to output in Low-Z	tOLZ ¹	0	_	0	_	0	_	0	_	0	_	ns
	G to output in High-Z	tOHZ ¹	_	2.5	_	2.5	_	2.5	_	3.0	_	3.8	ns
	ZZ setup time	tZZS ²	5	_	5	_	5	_	5	_	5	_	ns
	ZZ hold time	tZZH ²	1	_	1	_	1	_	1	_	1	_	ns
	ZZ recovery	tZZR	20	_	20	_	20	_	20	_	20	_	ns

- 1. These parameters are sampled and are not 100% tested.
- 2. ZZ is an asynchronous signal. However, in order to be recognized on any given clock cycle, ZZ must meet the specified setup and hold times as specified above.



Pipeline Mode Timing (DCD)

Flow Through Mode Timing (DCD)

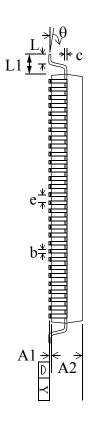

Sleep Mode

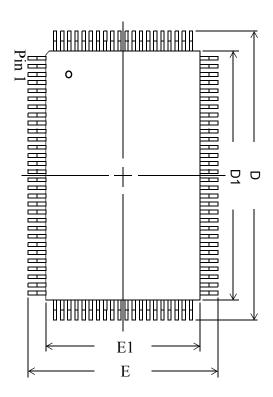
During normal operation, ZZ must be pulled low, either by the user or by its internal pull down resistor. When ZZ is pulled high, the SRAM will enter a Power Sleep mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates normally after ZZ recovery time.

Sleep mode is a low current, power-down mode in which the device is deselected and current is reduced to $I_{SB}2$. The duration of Sleep mode is dictated by the length of time the ZZ is in a High state. After entering Sleep mode, all inputs except ZZ become disabled and all outputs go to High-Z The ZZ pin is an asynchronous, active high input that causes the device to enter Sleep mode. When the ZZ pin is driven high, $I_{SB}2$ is guaranteed after the time tZZI is met. Because ZZ is an asynchronous input, pending operations or operations in progress may not be properly completed if ZZ is asserted. Therefore, Sleep mode must not be initiated until valid pending operations are completed. Similarly, when exiting Sleep mode during tZZR, only a Deselect or Read commands may be applied while the SRAM is recovering from Sleep mode.

Sleep Mode Timing Diagram

Application Tips


Single and Dual Cycle Deselect


SCD devices force the use of "dummy read cycles" (read cycles that are launched normally, but that are ended with the output drivers inactive) in a fully synchronous environment. Dummy read cycles waste performance, but their use usually assures there will be no bus contention in transitions from reads to writes or between banks of RAMs. DCD SRAMs (like this one) do not waste bandwidth on dummy cycles and are logically simpler to manage in a multiple bank application (wait states need not be inserted at bank address boundary crossings), but greater care must be exercised to avoid excessive bus contention.

TQFP Package Drawing (Package T)

Symbol	Description	Min.	Nom.	Max
A1	Standoff	0.05	0.10	0.15
A2	Body Thickness	1.35	1.40	1.45
b	Lead Width	0.20	0.30	0.40
С	Lead Thickness	0.09	_	0.20
D	Terminal Dimension	21.9	22.0	22.1
D1	Package Body	19.9	20.0	20.1
Е	Terminal Dimension	15.9	16.0	16.1
E1	Package Body	13.9	14.0	14.1
е	Lead Pitch	—	0.65	
L	Foot Length	0.45	0.60	0.75
L1	Lead Length	_	1.00	
Y	Coplanarity			0.10
θ	Lead Angle	0°	_	7°

- 1. All dimensions are in millimeters (mm).
- 2. Package width and length do not include mold protrusion.

Ordering Information for GSI Synchronous Burst RAMs

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A ³	Status
512K x 18	GS880E18BT-333	DCD Pipeline/Flow Through	TQFP	333/4.5	С	MP
512K x 18	GS880E18BT-300	DCD Pipeline/Flow Through	TQFP	300/5	С	MP
512K x 18	GS880E18BT-250	DCD Pipeline/Flow Through	TQFP	250/5.5	С	MP
512K x 18	GS880E18BT-200	DCD Pipeline/Flow Through	TQFP	200/6.5	С	MP
512K x 18	GS880E18BT-150	DCD Pipeline/Flow Through	TQFP	150/7.5	С	MP
256K x 32	GS880E32BT-333	DCD Pipeline/Flow Through	TQFP	333/4.5	С	MP
256K x 32	GS880E32BT-300	DCD Pipeline/Flow Through	TQFP	300/5	С	MP
256K x 32	GS880E32BT-250	DCD Pipeline/Flow Through	TQFP	250/5.5	С	MP
256K x 32	GS880E32BT-200	DCD Pipeline/Flow Through	TQFP	200/6.5	С	MP
256K x 32	GS880E32BT-150	DCD Pipeline/Flow Through	TQFP	150/7.5	С	MP
256K x 36	GS880E36BT-333	DCD Pipeline/Flow Through	TQFP	333/4.5	С	MP
256K x 36	GS880E36BT-300	DCD Pipeline/Flow Through	TQFP	300/5	С	MP
256K x 36	GS880E36BT-250	DCD Pipeline/Flow Through	TQFP	250/5.5	С	MP
256K x 36	GS880E36BT-200	DCD Pipeline/Flow Through	TQFP	200/6.5	С	MP
256K x 36	GS880E36BT-150	DCD Pipeline/Flow Through	TQFP	150/7.5	С	MP
512K x 18	GS880E18BT-333I	DCD Pipeline/Flow Through	TQFP	333/4.5	I	MP
512K x 18	GS880E18BT-300I	DCD Pipeline/Flow Through	TQFP	300/5	I	MP
512K x 18	GS880E18BT-250I	DCD Pipeline/Flow Through	TQFP	250/5.5	I	MP
512K x 18	GS880E18BT-200I	DCD Pipeline/Flow Through	TQFP	200/6.5	I	MP
512K x 18	GS880E18BT-150I	DCD Pipeline/Flow Through	TQFP	150/7.5	I	MP
256K x 32	GS880E32BT-333I	DCD Pipeline/Flow Through	TQFP	333/4.5	I	MP
256K x 32	GS880E32BT-300I	DCD Pipeline/Flow Through	TQFP	300/5	I	MP
256K x 32	GS880E32BT-250I	DCD Pipeline/Flow Through	TQFP	250/5.5	I	MP
256K x 32	GS880E32BT-200I	DCD Pipeline/Flow Through	TQFP	200/6.5	I	MP
256K x 32	GS880E32BT-150I	DCD Pipeline/Flow Through	TQFP	150/7.5	I	MP
256K x 36	GS880E36BT-333I	DCD Pipeline/Flow Through	TQFP	333/4.5	I	MP
256K x 36	GS880E36BT-300I	DCD Pipeline/Flow Through	TQFP	300/5	I	MP
256K x 36	GS880E36BT-250I	DCD Pipeline/Flow Through	TQFP	250/5.5	I	MP
256K x 36	GS880E36BT-200I	DCD Pipeline/Flow Through	TQFP	200/6.5	I	MP

Notes:

- 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS880E18BT-150IT.
- 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow through mode-selectable by the user.
- 3. $T_A = C = Commercial Temperature Range. T_A = I = Industrial Temperature Range.$
- 4. MP = Mass Production. PQ = Pre-Qualification.
- 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.

Rev: 1.04 6/2007 21/23 © 2001, GSI Technology

Ordering Information for GSI Synchronous Burst RAMs

Org	Part Number ¹	Туре	Package	Speed ² (MHz/ns)	T _A ³	Status
256K x 36	GS880E36BT-150I	DCD Pipeline/Flow Through	TQFP	150/7.5	ı	MP
512K x 18	GS880E18BGT-333	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	С	PQ
512K x 18	GS880E18BGT-300	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	С	PQ
512K x 18	GS880E18BGT-250	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	С	PQ
512K x 18	GS880E18BGT-200	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	С	PQ
512K x 18	GS880E18BGT-150	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	С	PQ
256K x 32	GS880E32BGT-333	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	С	PQ
256K x 32	GS880E32BGT-300	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	С	PQ
256K x 32	GS880E32BGT-250	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	С	PQ
256K x 32	GS880E32BGT-200	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	С	PQ
256K x 32	GS880E32BGT-150	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	С	PQ
256K x 36	GS880E36BGT-333	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	С	PQ
256K x 36	GS880E36BGT-300	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	С	PQ
256K x 36	GS880E36BGT-250	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	С	PQ
256K x 36	GS880E36BGT-200	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	С	PQ
256K x 36	GS880E36BGT-150	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	С	PQ
512K x 18	GS880E18BGT-333I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	ı	PQ
512K x 18	GS880E18BGT-300I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	ı	PQ
512K x 18	GS880E18BGT-250I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	ı	PQ
512K x 18	GS880E18BGT-200I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	ı	PQ
512K x 18	GS880E18BGT-150I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	I	PQ
256K x 32	GS880E32BGT-333I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	I	PQ
256K x 32	GS880E32BGT-300I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	I	PQ
256K x 32	GS880E32BGT-250I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	I	PQ
256K x 32	GS880E32BGT-200I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	I	PQ
256K x 32	GS880E32BGT-150I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	ı	PQ
256K x 36	GS880E36BGT-333I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	333/4.5	ı	PQ
256K x 36	GS880E36BGT-300I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	300/5	ı	PQ
256K x 36	GS880E36BGT-250I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	250/5.5	ı	PQ
256K x 36	GS880E36BGT-200I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	200/6.5	ı	PQ
256K x 36	GS880E36BGT-150I	DCD Pipeline/Flow Through	RoHS-compliant TQFP	150/7.5	ı	PQ

Notes:

- 1. Customers requiring delivery in Tape and Reel should add the character "T" to the end of the part number. Example: GS880E18BT-150IT.
- 2. The speed column indicates the cycle frequency (MHz) of the device in Pipeline mode and the latency (ns) in Flow Through mode. Each device is Pipeline/Flow through mode-selectable by the user.
- 3. $T_A = C = Commercial Temperature Range. T_A = I = Industrial Temperature Range.$
- 4. MP = Mass Production. PQ = Pre-Qualification.
- 5. GSI offers other versions this type of device in many different configurations and with a variety of different features, only some of which are covered in this data sheet. See the GSI Technology web site (www.gsitechnology.com) for a complete listing of current offerings.

Rev: 1.04 6/2007 22/23 © 2001, GSI Technology

9Mb Sync SRAM Datasheet Revision History

DS/DateRev. Code: Old; New	Types of Changes Format or Content	Page;Revisions;Reason
880E18B_r1		Creation of new datasheet
880E18B_r1; 880E18B_r1_01	Content/Format	 Updated current numbers Basic format updates Remove numbers from Address and DQ pins Update Package Thermal table Removed erroneous speed bins Added 333/300 MHz speed bins Removed Preliminary banner due to qualification of parts
880E18B_r1_01; 880E18B_r1_02	Content/Format	Added Pb-free information for TQFP
880E18B_r1_02; 880E18B_r1_03	Content	Changed Pb-free information to RoHS-compliant Added status to Ordering Information table
880E18B_r1_03; 880E18B_r1_04	Content	Updated Truth Tables (pg. 7, 8)