GP2S60

■ Features

1. Subminiature, leadless type. (Dimensions: 3.2×1.7×1.1mm)

2. Soldering reflow.

(Peak temperature : 240°C, 10s or less)

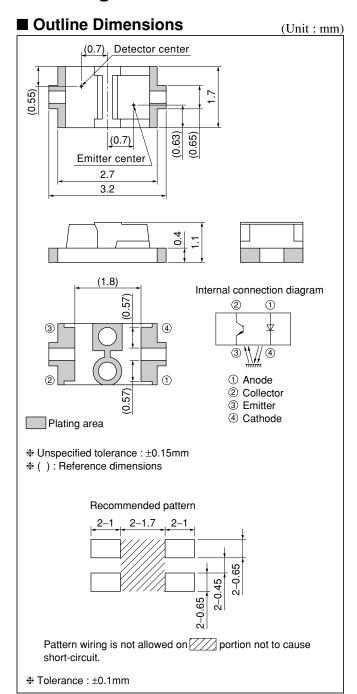
3. Taped model. (2 000 pcs/reel)

4. Visible light cut-off type.

■ Applications

1. Audio equipment

2. VCR


3. Camcoders

4. Printers

5. CD-ROM drives

■ Absolute Maximum Ratings $(T_a=25^{\circ}C)$ Parameter Symbol Rating Unit Forward current I_{F} 50 mΑ Reverse voltage V_R 6 V 75 mW P_D Power dissipation Collector-emitter voltage V_{CEO} 35 V Emitter-collector voltage V_{ECO} 6 V Collector current 20 mA I_{C} Collector power dissipation P_{C} 75 mW 100 Total power dissipation P_{tot} mW T_{opr} °C Operating temperature -25 to +85°C Storage temperature $T_{stg} \\$ -40 to +100 °C *Soldering temperature T_{sol} 260

Subminiature, Reflective Type Photointerrupter for Automatic Mounting

^{*}For MAX. 5s

■ Electro-optical Characteristics

 $(Ta=25^{\circ}C)$

Parameter			Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Input	Forward voltage		VF	I _F =20mA	-	1.2	1.4	V
	Reverse current		IR	V _R =6V	_	_	10	μΑ
Output	Collector dark current		Iceo	Vce=20V	-	1	100	nA
teristics	*1 Collector current		Ic	Vce=2V, I _F =4mA	40	85	130	μΑ
	*2 Leak current		ILEAK	Vce=2V, I _F =4mA	-	_	500	nA
	Response time	Rise time	t r	$V_{\text{CE}}=2V$, $I_{\text{C}}=100\mu A$	-	20	100	μs
		Fall time	t f	$R_L=1~000\Omega, d=1mm$	_	20	100	μs

^{*1} Refer to Fig.11

■ Rank Table

Model No.	Rank mark	Ic(µA)	Conditions
GP2S60	A or B	40 to 130	I _F =4mA
GP2S60A	A	40 to 80	Vce=2V
GP2S60B	В	65 to 130	Ta=25°C

Fig.1 Forward Current vs. Ambient Temperature

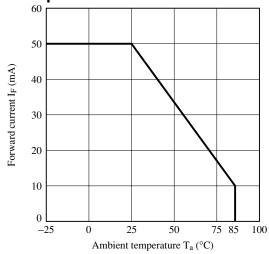
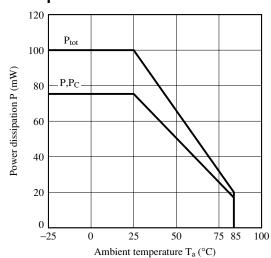



Fig.2 Power Dissipation vs. Ambient Temperature

^{*2} No Reflective object

Fig.3 Forward Current vs. Forward Voltage

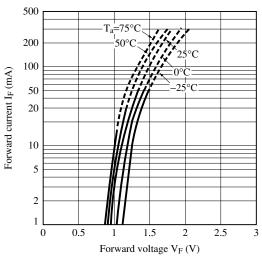


Fig.5 Collector Current vs. Collectoremitter Voltage

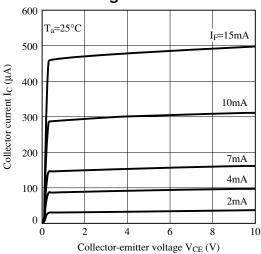


Fig.7 Collector Dark Current vs.
Ambient Temperature

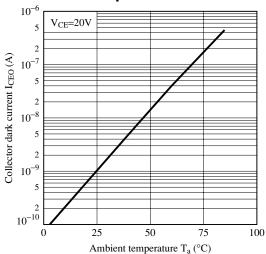


Fig.4 Collector Current vs. Forward Current

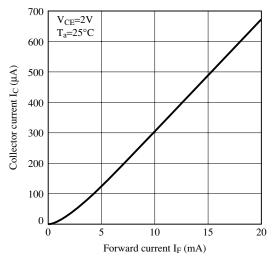
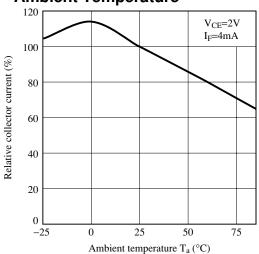



Fig.6 Relative Collector Current vs.
Ambient Temperature

SHARP GP2S60

Fig.8 Response Time vs. Load Resistance

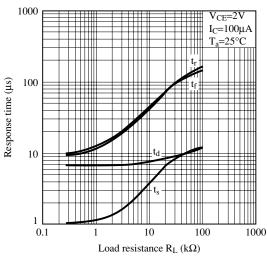


Fig.9 Test Circuit For Response Time

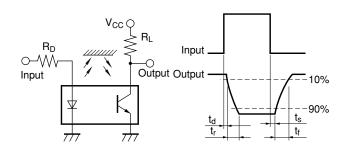


Fig.10 Relative Collector Current vs. Distance Between Sensor and Aluminum Evaporation Glass

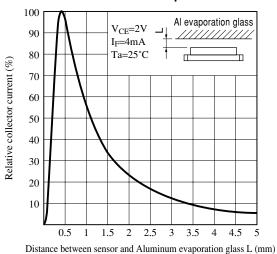


Fig.11 Measuring Configulation of Collector Current

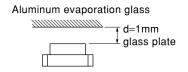


Fig.12 Spectral Sensitivity

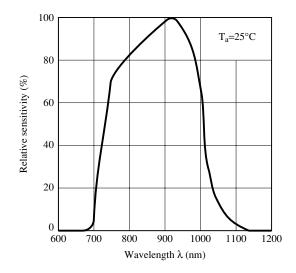


Fig.13 Relative Collector Current vs.OMS
Card Moving Distance

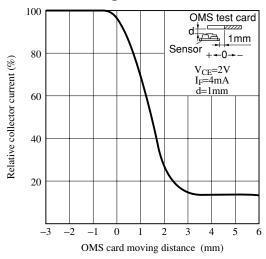


Fig.14 Relative Collector Current vs.OMS
Card Moving Distance

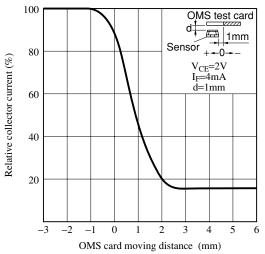
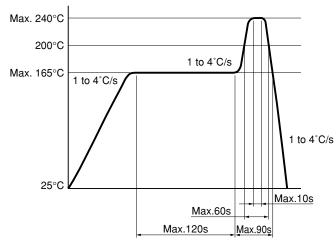



Fig.15 Reflow Soldering

Only one time soldering is available within the temperature profile shown below.

■ Other Precautions

An infrared lamp used to heat up for soldering may cause a localized temperature rise in the resin. So keep the package temperature within that specified in Item 1. Also avoid immersing the resin part in the solder. Even if within the temperature profile above, there is the possibility that the gold wire in package is broken in case that the deformation of PCW gives the affection to lead pins. Please use after confirmation the conditions fully by actual solder reflow machine.

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP
 reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents
 described herein at any time without notice in order to improve design or reliability. Manufacturing locations are
 also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.
 - (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications
 other than those recommended by SHARP or when it is unclear which category mentioned above controls the
 intended use.
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.