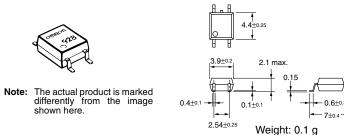
MOS FET Relays

Analog-Switching MOS FET Relay in 200-V Load Voltage Series, SOP Package.

- Ideal replacement for the dial-pulse relay or hook relay for modems and facsimile machines.
- Ideal for application to the line interface blocks of PBX and telephone exchange systems.
- Can be applied to hybrid IC circuits and card-type modems conforming to PCMCIA standards.
- Peak load voltage of 200 V.
- Approved standards: UL1577 (File No. E80555)
- RoHS Compliant.

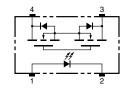
Application Examples

- PBX subscriber interfaces
- Multi-functional telephones
- Card-type modems and fax modems
- Built-in modems in personal computers

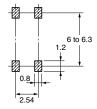

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO Surface-mounting		200 VAC	G3VM-S5	100	
	terminals		G3VM-S5(TR)		2,500

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-S5


 Terminal Arrangement/Internal Connections (Top View)

G3VM-S5

Actual Mounting Pad Dimensions (Recommended Value, Top View)

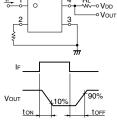
G3VM-S5

OMRON

92

Note: The actual product is marked differently from the image shown here.

OMRON


■ Absolute Maximum Ratings (Ta = 25°C)

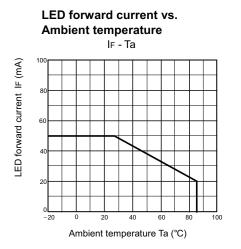
Item		Symbol	Rating	Unit	Measurement conditions
Input	LED forward current	I _F	50	mA	
	Repetitive peak LED forward current	I _{FP}	1	A	100 μs pulses, 100 pps
	LED forward current reduction rate	$\Delta I_{F}^{\circ}C$	-0.5	mA/°C	$T_a \ge 25^{\circ}C$
	LED reverse voltage	V _R	5	V	
	Connection temperature	T _j	125	°C	
Output	Load voltage (AC peak/DC)	V _{OFF}	200	V	
	Continuous load current	I _o	150	mA	
	ON current reduction rate	$\Delta I_{\rm ON}/^{\circ}{\rm C}$	-1.5	mA/°C	$T_a \ge 25^{\circ}C$
	Connection temperature	T _j	125	°C	
	ic strength between input and See note 1.)	V _{I-O}	1,500	V _{rms}	AC for 1 min
Operating temperature		T _a	-40 to +85	°C	With no icing or condensation
Storage temperature		T _{stg}	-55 to +100	°C	With no icing or condensation
Soldering temperature (10 s)			260	°C	10 s

Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions		
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	Note:	
	Reverse current	I _R			10	μA	V _R = 5 V		
	Capacity between terminals	CT		30		pF	V = 0, f = 1 MHz		
	Trigger LED forward current	I _{FT}		1	3	mA	l _o = 150 mA		
Output	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 500 mA		
	Current leakage when the relay is open	I _{LEAK}		0.00045	1.0	μA	V _{OFF} = 200 V		
	Capacity between terminals	COFF		100		pF	V = 0, f = 1MHz		
Capacit	ty between I/O terminals	C _{I-O}		0.8		pF	f = 1 MHz, V _s = 0 V		
Insulati	on resistance	R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{\text{I-O}} = 500 \text{ VDC}, \\ R_{\text{oH}} \leq 60\% \end{array}$		
Turn-ON time		t _{on}		0.6	1.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega,$ $V_{DD} = 20 \text{ V} (\text{See note 2.})$		
Turn-OFF time		t _{OFF}		0.1	1.0	ms	$v_{DD} = 20 v$ (See note 2.)		

2. Turn-ON and Turn-OFF Times RL -₩V---•VDD

Recommended Operating Conditions


Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}		150	200	V
Operating LED forward current	I _F	5	7.5	25	mA
Continuous load current (AC peak/DC)	I _o			120	mA
Operating temperature	T _a	- 20		65	°C

Note: 1. The dielectric strength between the input and output was checked by applying voltage be-tween all pins as a group on the LED side and all pins as a group on the light-receiving side.

OMRON

Engineering Data

Continuous load current vs.

0

On-state voltage VON (V)

Turn ON, Turn OFF time vs.

ton, toff - IF

10

LED forward current IF (mA)

5

30 50 100

LED forward current

Io - Von

On-state voltage

20

-200 -3

300

1000

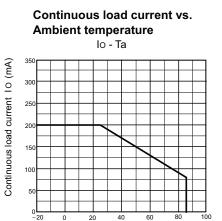
300

100

10

Turn ON, Turn OFF time ton, toFF (µS)

Continuous load current IO (mA)


Ta=25°C

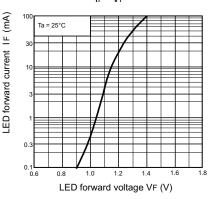
IF = 5mA

A Connection

- 2

tON

Ambient temperature Ta (°C)


On-state resistance vs.

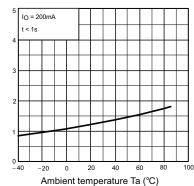
Ron - Ta

Ambient temperature

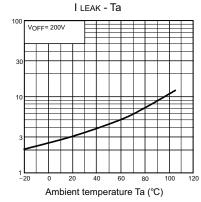
LED forward current vs. LED forward voltage

IF - VF

Trigger LED forward current vs. **Ambient temperature**



IFT (mA)


Trigger LED forward current

Current leakage ILEAK (nA)

100

Current leakage vs. **Ambient temperature**

On-state resistance RON (Ω)

0**-**-20

Turn ON, Turn OFF time ton, toFF (µS)

2

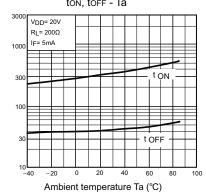
Ta = 25°C

VDD= 20V RL= 200Ω

300 500

IO = 200mA

IF = 5mA


t < 1s

0 20 40 60 80

Ambient temperature Ta (°C)

Turn ON, Turn OFF time vs. Ambient temperature

ton, toff - Ta

Downloaded from Datasheet.su

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite E Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA

MOS FET Relays G3VM-S5