

December 2009

FOD2200 Low Input Current Logic Gate Optocouplers

Features

- 1kV/µs minimum common mode rejection
- Compatible with LSTTL, TTL, and CMOS logic
- Wide V_{CC} range (4.5V to 20V)
- 2.5Mbd guaranteed over temperature
- Low input current (1.6mA)
- Three state output (no pullup resistor required)
- Guaranteed performance from 0°C to 85°C
- Hysteresis
- Safety approvals UL, CSA, VDE (pending)
- V_{ISO} = 5kVRMS

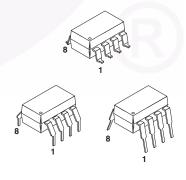
Applications

- Isolation of high speed logic systems
- Computer peripheral interfaces
- Microprocessor system interfaces
- Ground loop elimination
- Pulse transformer replacement
- Isolated bus driver
- High speed line receiver

Description

The FOD2200 is an optically coupled logic gate that combine an AlGaAs LED and an integrated high gain photo detector. The detector has a three state output stage and has a detector threshold with hysteresis. The three state output eliminates the need for a pullup resistor and allows for direct drive of data busses. The hysteresis provides differential mode noise immunity and eliminates the potential for output signal chatter.

The Electrical and Switching Characteristics of the FOD2200 are guaranteed over the temperature range of 0°C to 85°C and a V_{CC} range of 4.5V to 20V. Low I_F and wide V_{CC} range allow compatibility with TTL, LSTTL, and CMOS logic and result in lower power consumption compared to other high speed opto-couplers. Logic signals are transmitted with a maximum propagation delay of 300ns. The FOD2200 is useful for isolating high speed logic interfaces, buffering of input and output lines, and implementing isolated line receivers in high noise environments.


Truth Table (Positive Logic)

LED	Enable	Output
On	Н	Z
Off	Н	Z
On	L	Н
Off	L	L

Functional Block Diagram and Schematic

8 V_{CC} NC ANODE 2 CATHODE 5 GND NC → GND SHIELD SHIELD

Package Outlines

©2004 Fairchild Semiconductor Corporation FOD2200 Rev. 1.0.2

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise specified)

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
T _{STG}	Storage Temperature	-40 to +125	°C
T _{OPR}	Operating Temperature	-40 to +85	°C
T _{SOL}	Lead Solder Temperature (1.6mm below seating plane)	260 for 10 sec	°C
EMITTER			
I _{F (PK)}	Peak Transient Input Current (≤1µs PW, 300pps)	1.0	Α
I _F	Average Forward Input Current	10	mA
V _R	Reverse Input Voltage	5.0	V
P _D	Output Power Dissipation (No derating required up to 85°C)	45	mW
DETECTOR			
V _{CC}	Supply Voltage	0 to 20	V
Io	Average Output Current	25	mA
VE	Three State Enable Voltage	-0.5 to 20	V
V _O	Output Voltage	-0.5 to 20	V
P _D	Output Power Dissipation (No derating required up to 85°C)	150	mW

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
I _{F(ON)}	Forward Input Current	1.6*	5	mA
I _{F(OFF)}	Forward Input Current		0.1	mA
V _{CC}	Supply Voltage, Output	4.5	20	V
V _{EL}	Enable Voltage, LOW Level	0	0.8	V
V _{EH}	Enable Voltage, HIGH Level	2.0	20	V
T _A	Operating Temperature	0	+85	°C
N	Fan Out (TTL Load)		4	

^{*}The initial switching threshold is 1.6mA or less. It is recommended that 2.2mA be used to permit at least a 20% CTR degradation guardband.

Electrical Characteristics ($T_A = 0$ °C to +85°C, $V_{CC} = 4.5$ V to 20V, $I_{F(ON)} = 1.6$ mA to 5mA, $V_{EH} = 2$ V to 20V, $V_{EL} = 0$ V to 0.8V, $I_{F(OFF)} = 0$ mA to 0.1mA unless otherwise specified.)⁽¹⁾

Individual Component Characteristics

Symbol	Parameter	Test Condit	Test Conditions		Тур.*	Max.	Unit
EMITTER	-						1
V _F	Input Forward Voltage	$I_F = 5mA$				1.75	V
			$T_A = 25^{\circ}C$		1.40	1.7	
B _{VR}	Input Reverse Breakdown Voltage	I _R = 10μA		5.0			V
C _{IN}	Input Capacitance	Pins 2 & 3, V _F = 0, f =	1MHz		60		pF
ΔVF/ΔΤΑ	Input Diode Temperature Coefficient	I _F = 5mA			-1.4		mV/°C
DETECTO	DR						•
I _{CCH}	High Level Supply	$I_F = 5mA$, $I_O = Open$,	$V_{CC} = 5.5V$		3.5	4.5	mA
	Current	V _E = Don't Care	V _{CC} = 20V		4.0	6.0	
I _{CCL}	Low Level Supply Current	$I_F = 0$, $I_O = Open$,	$V_{CC} = 5.5V$		4.4	6.0	mA
		V _E = Don't care	V _{CC} = 20V		5.2	7.5	
I _{EL}	Low Level Enable Current	V _E = 0.4V			-0.1	-0.32	mA
I _{EH}	High Level Enable Current	V _E = 2.7V				20	μA
		V _E = 5.5V				100	
		V _E = 20V			0.005	250	
V _{EH}	High Level Enable Voltage			2.0			V
V _{EL}	Low Level Enable Voltage					0.8	V

Switching Characteristics ($T_A = 0$ °C to +85°C, $I_{F(ON)} = 1.6$ mA to 5mA, $I_{F(OFF)} = 0$ to 0.1mA, $V_{CC} = 4.5$ V to 20V unless otherwise specified.)

Symbol	AC Characteristics	Test Conditi	ions	Min.	Тур.*	Max.	Unit
T _{PLH}	Propagation Delay Time to Output High Level	With Peaking Capacito	r ⁽²⁾⁽⁴⁾ (Fig. 1)		120	300	ns
T _{PHL}	Propagation Delay Time to Output Low Level	With Peaking Capacito	r ⁽³⁾⁽⁴⁾ (Fig. 1)	4	180	300	ns
t _r	Output Rise Time (10% to 90%)	⁽⁵⁾ (Fig. 1)			80		ns
t _f	Output Fall Time (90% to 10%)	⁽⁶⁾ (Fig. 1)			25		ns
t _{PZH}	Enable Propagation Delay Time to Output High Level	(Fig. 2)			40		ns
t _{PZL}	Enable Propagation Delay Time to Output Low Level	(Fig. 2)			50		ns
T _{PHZ}	Disable Propagation Delay Time from Output High Level	(Fig. 2)			95	(-	ns
T _{PLZ}	Disable Propagation Delay Time from Output Low Level	(Fig. 2)			80		ns
ICM _H I	Common Mode Transient Immunity (at Output High Level)	$T_A = 25^{\circ}\text{C}, I_F = 1.6\text{mA}, V_{OH} \text{ (Min.)} = 2.0\text{V}, V_{CC} = 5\text{V}^{(7)} \text{ (Fig. 3)}$	IV _{CM} I = 50V	1000			V/µs
ICM _L I	Common Mode Transient Immunity (at Output Low Level)	$\begin{split} & T_{A} = 25^{\circ}\text{C}, \ I_{F} = 0\text{mA}, \\ & V_{OL} \ (\text{Max.}) = 0.8 \ \text{V}, \\ & V_{CC} = 5V^{(8)} \ (\text{Fig. 3}) \end{split}$	IV _{CM} = 50V	1000			V/µs

^{*}Typical values at T_A = 25°C, V_{CC} = 5V, $I_{F(ON)}$ = 3mA unless otherwise specified.

Electrical Characteristics (Continued)

Transfer Characteristics ($T_A = 0$ °C to +85°C, $V_{CC} = 4.5V$ to 20V, $I_{F(ON)} = 1.6$ mA to 5mA, $V_{EH} = 2V$ to 20V, $V_{EL} = 0V$ to 0.8V, $I_{F(OFF)} = 0$ mA to 0.1mA unless otherwise specified.)⁽¹⁾

Symbol	DC Characteristics	Test Condition	ns	Min.	Тур.*	Max.	Unit
I _{OHH}	Output Leakage Current	$V_{CC} = 4.5V, I_F = 5mA$	$V_0 = 5.5V$		2.0	100	μΑ
	$(V_{OUT} > V_{CC})$		V _O = 20V		2.5	500	
V _{OL}	Low Level Output Voltage	$V_{CC} = 4.5 \text{ V}, I_F = 0 \text{mA}, V_{OL} = 6.4 \text{mA}^{(2)}$	$V_{E} = 0.4 \text{ V},$		0.33	0.5	V
I _{FT}	Input Threshold Current	$V_{CC} = 4.5V, V_{O} = 0.5V, V_{OL} = 6.4mA$	$V_{E} = 0.4V$,			1.6	mA
V _{OH}	Logic High Output Voltage	I _{OH} = -2.6mA		2.4	V _{CC} – 1.8		V
l _{OZL}	High Impedance State Output Current	$V_{O} = 0.4V, V_{EN} = 2V, I_{F}$	= 5mA			-20	μΑ
I _{OZH}	High Impedance State $V_O = 2.4 \text{ V}, V_{EN} = 2 \text{ V}, I_F = 5 \text{mA}$		= 5mA			20	μΑ
	Output Current	$V_{O} = 5.5 \text{ V}, V_{EN} = 2 \text{ V}, I_{F}$	= 5mA			100	
		$V_{O} = 20 \text{ V}, V_{EN} = 2 \text{ V}, I_{F}$	= 5mA			500	
I _{OSL}	Logic Low Short Circuit	$V_{O} = V_{CC} = 5.5V, I_{F} = 0r$	nΑ	25			mA
	Output Current ⁽¹⁰⁾	$V_{O} = V_{CC} = 20V, I_{F} = 0n$	nΑ	40			
I _{OSH}	Logic High Short Circuit	$V_{CC} = 5.5V, I_F = 5mA, V$	O = GND	-10			mA
	Output Current ⁽¹⁰⁾	$V_{CC} = 20V, I_F = 5mA, V_C$	o = GND	-25			
I _{HYS}	Input Current Hysteresis	V _{CC} = 4.5V			0.03		mA

Isolation Characteristics (T_A = 0°C to +85°C unless otherwise specified)

Symbol	Characteristics	Test Conditions	Min.	Тур.*	Max.	Unit
V _{ISO}	Withstand Insulation Test Voltage	$R_H < 50\%$, $T_A = 25$ °C, $t = 1 \text{ min.}^{(9)}$	5000			V _{RMS}
R _{I-O}	Resistance (Input to Output)	$V_{I-O} = 500 VDC^{(9)}$		10 ¹²		Ω
C _{I-O}	Capacitance (Input to Output)	$V_{I-O} = 0V, f = 1MHz^{(9)}$		0.6		pF

^{*}Typical values at T_A = 25°C, V_{CC} = 5V, $I_{F(ON)}$ = 3mA unless otherwise stated.

Notes:

- The V_{CC} supply to each optoisolator must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic
 or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible
 to the package V_{CC} and GND pins of each device.
- t_{PLH} Propagation delay is measured from the 50% level on the LOW to HIGH transition of the input current pulse
 to the 1.3V level on the LOW to HIGH transition of the output voltage pulse.
- 3. t_{PHL} Propagation delay is measured from the 50% level on the HIGH to LOW transition of the input current pulse to the 1.3V level on the HIGH to LOW transition of the output voltage pulse.
- 4. When the peaking capacitor is omitted, propagation delay times may increase by 100ns.
- 5. t_r Rise time is measured from the 10% to the 90% levels on the LOW to HIGH transition of the output pulse.
- 6. t_f Fall time is measured from the 90% to the 10% levels on the HIGH to LOW transition of the output pulse.
- CM_H The maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the high state (i.e., V_{OLIT} > 2.0V).
- 8. CM_L The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the low state (i.e., $V_{OUT} < 0.8V$).
- 9. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together, and Pins 5, 6, 7 and 8 shorted together.
- 10. Duration of output short circuit time should not exceed 10ms.

Test Circuits

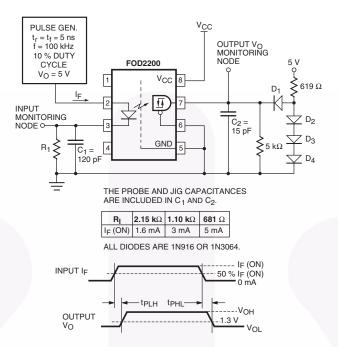
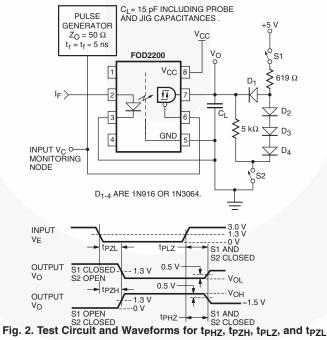



Fig. 1. Test Circuit and Waveforms for $t_{\text{PLH}},\,t_{\text{PHL}},\,t_{\text{r}}$ and t_{f}

Test Circuits (Continued)

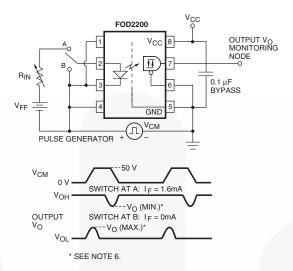


Fig. 3. Test Circuit and Typical Waveforms for Common Mode Transient Immunity

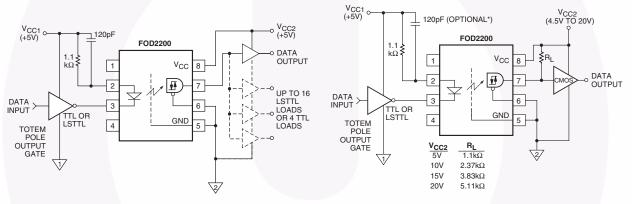


Figure 4. Recommended LSTTL to LSTTL Circuit

Figure 5. LSTTL to CMOS Interface Circuit

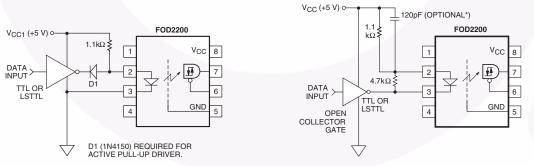
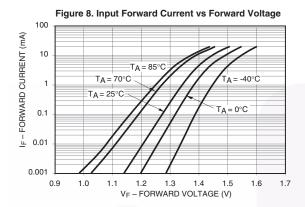
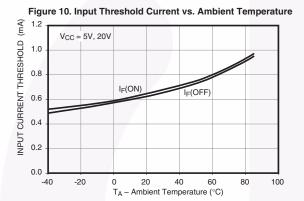
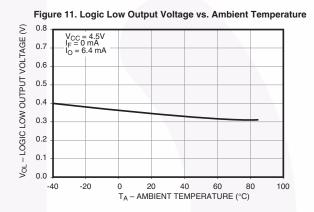
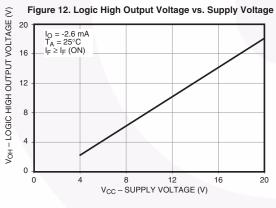


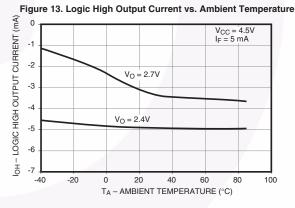
Figure 6. Recommended LED Drive Circuit

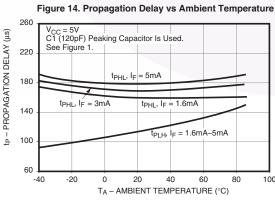
Figure 7. Series LED Drive with Open Collector Gate (4.7k Ω Resistor Shunts IOH from the LED)

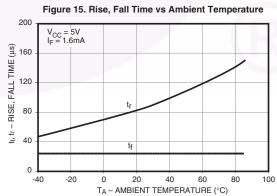
^{*}The 120pF capacitor may be omitted in applications where 500ns propagation delay is sufficient.

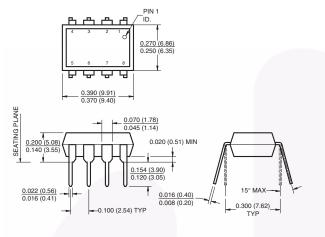
Typical Performance Curves

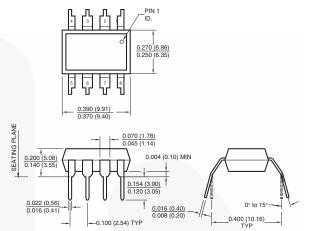






Figure 9. Output Voltage vs. Input Forward Current VCC = 4.5V T_A = 25°C S Output Voltage 3 I_O = -2.6mA I_F(OFF) IF(ON) 9 $I_O = 6.4 \text{mA}$ 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2

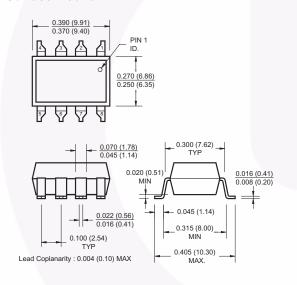

IF - INPUT FORWARD CURRENT (mA)

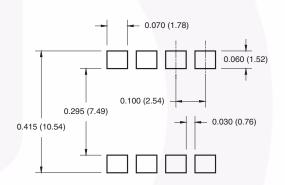





©2004 Fairchild Semiconductor Corporation FOD2200 Rev. 1.0.2

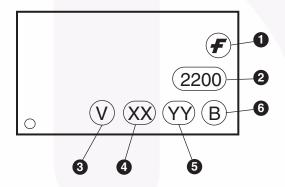
Package Dimensions


Through Hole


0.4" Lead Spacing

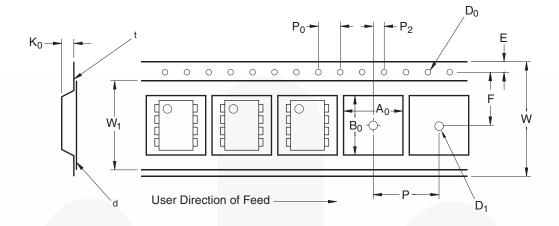
Surface Mount

8-Pin DIP - Land Pattern

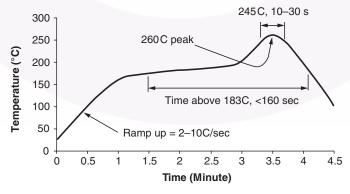

Note:

All dimensions are in inches (millimeters)

Ordering Information


Option	ion Example Part Number Description	
No Option	FOD2200	Standard Through Hole
S	FOD2200S	Surface Mount Lead Bend
SD	FOD2200SD	Surface Mount; Tape and Reel
Т	FOD2200T 0.4" Lead Spacing	
V	FOD2200V	VDE0884
TV	FOD2200TV	VDE0884; 0.4" Lead Spacing
SV	FOD2200SV VDE0884; Surface Mount	
SDV	FOD2200SDV	VDE0884; Surface Mount; Tape and Reel

Marking Information


Definiti	Definitions				
1	Fairchild logo				
2	Device number				
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)				
4	Two digit year code, e.g., '03'				
5	Two digit work week ranging from '01' to '53'				
6	Assembly package code				

Carrier Tape Specifications

Symbol	Description	Dimension in mm
W	Tape Width	16.0 ± 0.3
t	Tape Thickness	0.30 ± 0.05
P ₀	Sprocket Hole Pitch	4.0 ± 0.1
D ₀	Sprocket Hole Diameter	1.55 ± 0.05
Е	Sprocket Hole Location	1.75 ± 0.10
F	Pocket Location	7.5 ± 0.1
P ₂		4.0 ± 0.1
Р	Pocket Pitch	12.0 ± 0.1
A ₀	Pocket Dimensions	10.30 ±0.20
B ₀		10.30 ±0.20
K ₀		4.90 ±0.20
W ₁	Cover Tape Width	1.6 ± 0.1
d	Cover Tape Thickness	0.1 max
	Max. Component Rotation or Tilt	10°
R	Min. Bending Radius	30

Reflow Profile

- Peak reflow temperature: 260 C (package surface temperature)
 Time of temperature higher than 183 C for 160 seconds or less
- · One time soldering reflow is recommended

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Intended to be an exhaustive list of all such trademarks.

AccuPowerTM FlashWriter^{©*}

Auto-SPMTM FPSTM

Build it NowTM F-PFSTM

CorePLUSTM FRFET[©]

CorePOWERTM Global Power Resource Green FPSTM

CTLTM Green FPSTM e-SeriesTM

CTL™
Current Transfer Logic™
DEUXPEED®
EcoSPARK®
EfficientMax™
EZSWITCH™*

Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT®
FAST®
FastvCore™

Green FPS™ e-Series™
Gmax™
GTO™
IntelliMAX™
ISOPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MillerDrive™
MotionMax™
Motion-SPM™
OPTOLOGIC®

OPTOLOGIC® OPTOPLANAR®

PDP SPM™

Power-SPM™ PowerTrench® PowerXS™

Programmable Active Droop™

QFĔT[®] QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SignaïWise™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™.3 SuperSOT™.6 SuperSOT™.8 SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ®*

GENERAL

The Power Franchise the

Franchise
TinyBoost™
TinyBuck™
TinyBuck™
TinyCalc™
TinyLogic®
TINYOPTO™
TinyPower™
TinyPWM™
TinyWire™
TinyWire™
TriFault Detect™
TRUECURRENT™*
SerDes™

SerDes
UHC®
Ultra FRFET™
UniFET™
VCX™
VisualMax™
XS™

DISCLAIMER

FFTBench™

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 144

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.