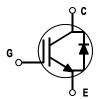


September 2006

# FGD3N60LSD

### **Features**

- · High Current Capability
- Very Low Saturation Voltage :  $V_{CE(sat)}$  = 1.2 V @  $I_C$  = 3A
- · High Input Impedance


### **Applications**

- · HID Lamp Applications
- · Piezo Fuel Injection Applications

## **Description**

Fairchild's Insulated Gate Bipolar Transistors (IGBTs) provide very low conduction losses. The device is designed for applications where very low On-Voltage Drop is a required feature.





### **Absolute Maximum Ratings**

| Symbol              | Description                                                             |                          | FGD3N60LSD  | Units |  |
|---------------------|-------------------------------------------------------------------------|--------------------------|-------------|-------|--|
| V <sub>CES</sub>    | Collector-Emitter Voltage                                               |                          | 600         | V     |  |
| V <sub>GES</sub>    | Gate-Emitter Voltage                                                    |                          | ± 25        | V     |  |
| I <sub>C</sub>      | Collector Current                                                       | @ T <sub>C</sub> = 25°C  | 6           | Α     |  |
|                     | Collector Current                                                       | @ T <sub>C</sub> = 100°C | 3           | Α     |  |
| I <sub>CM (1)</sub> | Pulsed Collector Current                                                | (1)                      | 25          | Α     |  |
| lf                  | Diode Continous Forward Current                                         | @ T <sub>C</sub> = 100°C | 3           | Α     |  |
| I FM                | Diode Maximum Forward Current                                           |                          | 25          | Α     |  |
| P <sub>D</sub>      | Maximum Power Dissipation                                               | @ T <sub>C</sub> = 25°C  | 40          | W     |  |
|                     | Derating Factor                                                         |                          | 0.32        | W/°C  |  |
| T <sub>J</sub>      | Operating Junction Temperature                                          |                          | -55 to +150 | °C    |  |
| T <sub>stg</sub>    | Storage Temperature Range                                               |                          | -55 to +150 | °C    |  |
| T <sub>L</sub>      | Maximum Lead Temp. for Soldering Purposes, 1/8" from Case for 5 Seconds | }                        | 250         | °C    |  |

#### Notes :

(1) Repetitive rating : Pulse width limited by max. junction temperature

### **Thermal Characteristics**

| Symbol                                                                       | ibol Parameter                       |  | Max. | Units |  |
|------------------------------------------------------------------------------|--------------------------------------|--|------|-------|--|
| R <sub>θJC</sub> (IGBT)                                                      | Thermal Resistance, Junction-to-Case |  | 3.1  | °C/W  |  |
| $R_{\theta JA}$ Thermal Resistance, Junction-to-Ambient (PCB Mount) $_{(2)}$ |                                      |  | 100  | °C/W  |  |

#### Notes

(2) Mounted on 1" squre PCB (FR4 or G-10 Material)

# **Package Marking and Ordering Information**

| Device Marking Device |              | Package | Reel Size | Tape Width | Quantity |
|-----------------------|--------------|---------|-----------|------------|----------|
| FGD3N60LSD            | FGD3N60LSDTM | D-PAK   | 380mm     | 16mm       | 2500     |

# Electrical Characteristics of the IGBT $T_C = 25^{\circ}C$ unless otherwise noted

| Symbol                                  | Parameter                                    | Test Conditions                                                        | Min. | Тур. | Max.  | Units |
|-----------------------------------------|----------------------------------------------|------------------------------------------------------------------------|------|------|-------|-------|
| Off Charact                             | eristics                                     |                                                                        |      |      |       |       |
| BV <sub>CES</sub>                       | Collector-Emitter Breakdown Voltage          | V <sub>GE</sub> = 0V, I <sub>C</sub> = 250uA                           | 600  |      |       | V     |
| ΔB <sub>VCES</sub> /<br>ΔΤ <sub>J</sub> | Temperature Coefficient of Breakdown Voltage | $V_{GE}$ = 0V, $I_C$ = 1mA                                             |      | 0.6  |       | V/°C  |
| I <sub>CES</sub>                        | Collector Cut-Off Current                    | $V_{CE} = V_{CES}, V_{GE} = 0V$                                        |      |      | 250   | uA    |
| I <sub>GES</sub>                        | G-E Leakage Current                          | $V_{GE} = V_{GES}, V_{CE} = 0V$                                        |      |      | ± 100 | nA    |
| On Charact                              | eristics                                     |                                                                        |      |      |       |       |
| V <sub>GE(th)</sub>                     | G-E Threshold Voltage                        | $I_C$ = 3mA, $V_{CE}$ = $V_{GE}$                                       | 2.5  | 3.2  | 5.0   | V     |
| V <sub>CE(sat)</sub>                    | Collector to Emitter                         | $I_C = 3A$ , $V_{GE} = 10V$                                            |      | 1.2  | 1.5   | V     |
| OL(odt)                                 | Saturation Voltage                           | I <sub>C</sub> = 6A, V <sub>GE</sub> = 10V                             |      | 1.8  |       | V     |
| Dumamia Cl                              |                                              |                                                                        | I    |      |       |       |
| C <sub>ies</sub>                        | naracteristics Input Capacitance             | V <sub>CE</sub> = 25V, V <sub>GE</sub> = 0V,                           |      | 185  |       | pF    |
| C <sub>oes</sub>                        | Output Capacitance                           | f = 1MHz                                                               |      | 20   |       | pF    |
| C <sub>res</sub>                        | Reverse Transfer Capacitance                 |                                                                        |      | 5.5  |       | pF    |
| t <sub>d(on)</sub>                      | Characteristics  Turn-On Delay Time          | V <sub>CC</sub> = 480 V, I <sub>C</sub> = 3A,                          |      | 40   |       | ns    |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                           | V <sub>CC</sub> = 480 V, I <sub>C</sub> = 3A,                          |      | 40   |       | ns    |
| t <sub>r</sub>                          | Rise Time                                    | $R_G = 470\Omega$ , $V_{GE} = 10V$ ,<br>Inductive Load, $T_C = 25$ °C  |      | 40   |       | ns    |
| $t_{d(off)}$                            | Turn-Off Delay Time                          |                                                                        |      | 600  |       | ns    |
| t <sub>f</sub>                          | Fall Time                                    |                                                                        |      | 600  |       | ns    |
| $E_{on}$                                | Turn-On Switching Loss                       |                                                                        |      | 250  |       | uJ    |
| $E_{off}$                               | Turn-Off Switching Loss                      |                                                                        |      | 1.00 |       | mJ    |
| E <sub>ts</sub>                         | Total Switching Loss                         |                                                                        |      | 1.25 |       | mJ    |
| t <sub>d(on)</sub>                      | Turn-On Delay Time                           | V <sub>CC</sub> = 480 V, I <sub>C</sub> = 3A,                          |      | 40   |       | ns    |
| t <sub>r</sub>                          | Rise Time                                    | $R_G = 470\Omega$ , $V_{GE} = 10V$ ,<br>Inductive Load, $T_C = 125$ °C |      | 45   |       | ns    |
| t <sub>d(off)</sub>                     | Turn-Off Delay Time                          | Inductive Load, 1 <sub>C</sub> = 125 C                                 |      | 620  |       | ns    |
| t <sub>f</sub>                          | Fall Time                                    |                                                                        |      | 800  |       | ns    |
| E <sub>on</sub>                         | Turn-On Switching Loss                       |                                                                        |      | 300  |       | uJ    |
| E <sub>off</sub>                        | Turn-Off Switching Loss                      |                                                                        |      | 1.9  |       | mJ    |
| E <sub>ts</sub>                         | Total Switching Loss                         |                                                                        |      | 2.2  |       | mJ    |
| Q <sub>g</sub>                          | Total Gate Charge                            | V <sub>CE</sub> = 480 V, I <sub>C</sub> = 3A,                          |      | 12.5 |       | nC    |
| Q <sub>ge</sub>                         | Gate-Emitter Charge                          | V <sub>GE</sub> = 10V                                                  |      | 2.8  |       | nC    |
| Q <sub>gc</sub>                         | Gate-Collector Charge                        |                                                                        |      | 4.9  |       | nC    |
| L <sub>e</sub>                          | Internal Emitter Inductance                  | Measured 5mm from PKG                                                  |      | 7.5  |       | nH    |

# Electrical Characteristics of DIODE $T_C = 25^{\circ}C$ unless otherwise noted

| Symbol          | Parameter                           | Test Conditions              |                        | Min. | Тур. | Max. | Units |
|-----------------|-------------------------------------|------------------------------|------------------------|------|------|------|-------|
| $V_{FM}$        | Diode Forward Voltage               | I <sub>F</sub> = 3A          | T <sub>C</sub> = 25°C  |      | 1.5  | 1.9  | V     |
|                 |                                     |                              | T <sub>C</sub> = 100°C |      | 1.55 |      |       |
| t <sub>rr</sub> | Diode Reverse Recovery Time         | I <sub>F</sub> = 3A,         | T <sub>C</sub> = 25°C  |      | 234  |      | ns    |
|                 |                                     | di/dt = 100A/us<br>VR = 200V | T <sub>C</sub> = 100°C |      |      |      |       |
| Irr             | Diode Peak Reverse Recovery Current | VR - 200 V                   | T <sub>C</sub> = 25°C  |      | 2.64 |      | Α     |
|                 |                                     |                              | T <sub>C</sub> = 100°C |      |      |      |       |
| Q <sub>rr</sub> | Diode Reverse Recovery Charge       |                              | T <sub>C</sub> = 25°C  |      | 309  |      | nC    |
|                 |                                     |                              | T <sub>C</sub> = 100°C |      |      |      |       |

# **Typical Performance Characteristics**

**Figure 1. Typical Output Characteristics** 

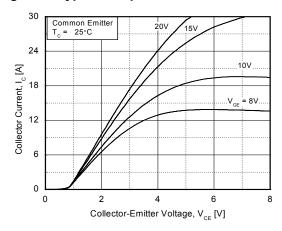



Figure 3. Typical Output Characteristics

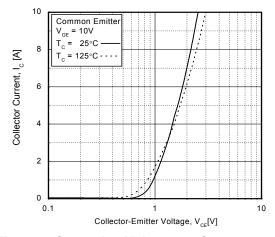
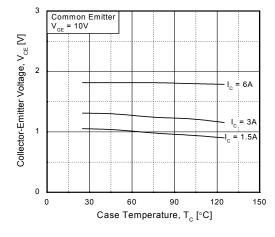




Figure 5. Saturation Voltage vs. Case



**Figure 2. Typical Output Characteristics** 

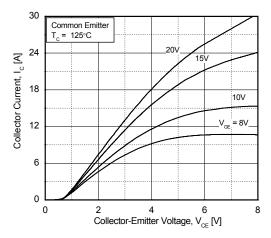
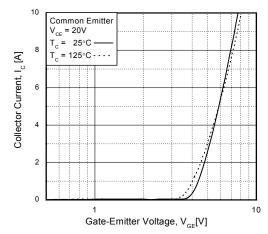
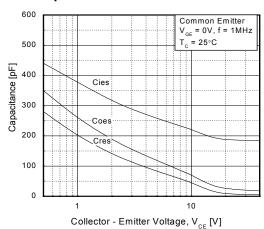





Figure 4. Transfer Characteristics



**Figure 6. Capacitance Characteristics** 



## Typical Performance Characteristics (Continued)

Figure 7. Gate Charge

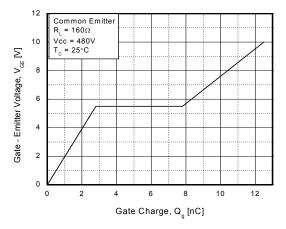



Figure 9. Turn-Off Characteristics vs. Gate Resistance

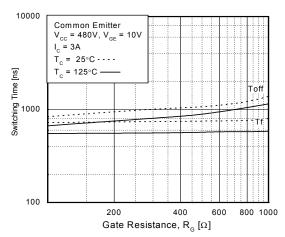



Figure 11. Turn-On Characteristics vs. Collector Current

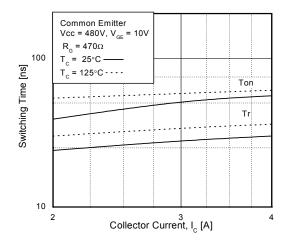



Figure 8. Turn-On Characteristics vs. Gate Resistance

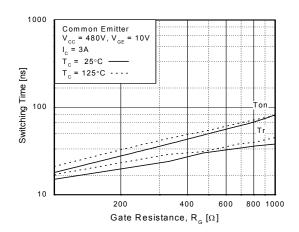



Figure 10. Switching Loss vs. Gate Resistance

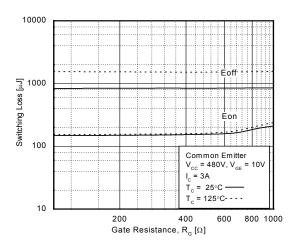
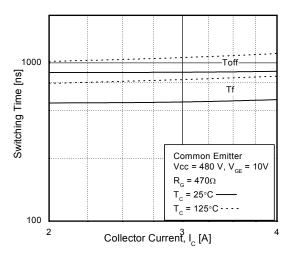




Figure 12. Turn-Off Characteristics vs. Collector Current



# Typical Performance Characteristics (Continued)

Figure 13. Switching Loss vs. Collector Current

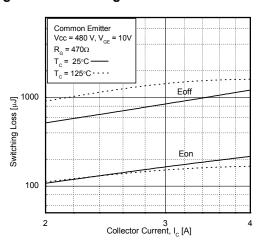



Figure 14. Forward Characteristics

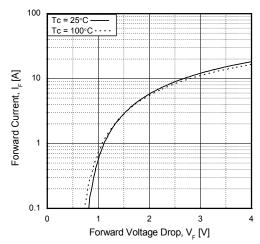



Figure 15. Forward Voltage Drop Vs Tj

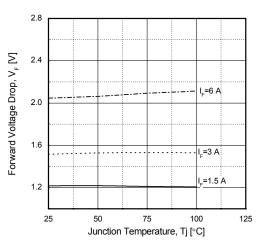



Figure 16. SOA Characteristics

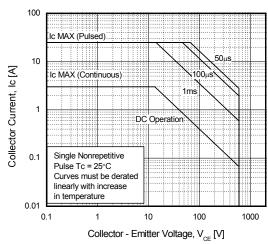
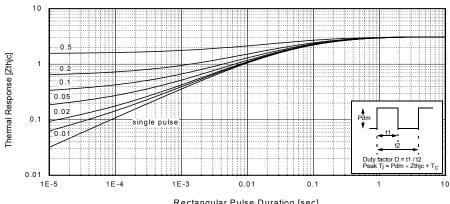




Figure 17. Transient Thermal Impedance of IGBT



Rectangular Pulse Duration [sec]

# **Mechanical Dimensions** D-PAK $6.60 \pm 0.20$ 0.70 ±0.20 $5.34 \pm 0.30$ $2.30 \pm 0.10$ (0.50)(0.50)(4.34) $0.50 \pm 0.10$ 0.60 ±0.20 $6.10 \pm 0.20$ $0.91 \,\pm\! 0.10$ 9.50 ±0.30 $2.70 \pm 0.20$ MIN0.55 $0.80 \pm 0.20$ 0.89 ±0.10 MAX0.96 $0.76 \pm 0.10$ $0.50 \pm 0.10$ 1.02 ±0.20 2.30TYP 2.30TYP [2.30±0.20] [2.30±0.20] 2.30 ±0.20 $6.60 \pm 0.20$ (5.34)(5.04)(0.90)(1.00)(1.50)(3.05) $6.10 \pm 0.20$ (2XR<sub>0.25</sub>) 9.50 ±0.30 $2.70 \pm 0.20$ 0.76 ±0.10 Dimensions in Millimeters

### **TRADEMARKS**

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™ FACT Quiet Series™ OCX™ SILENT SWITCHER® ActiveArray™ GlobalOptoisolator™ OCXPro™ SMART START™ OPTOLOGIC® Bottomless™ GTO™ SPM™ Build it Now™ HiSeC™ OPTOPLANAR™ Stealth™ I<sup>2</sup>C™ PACMAN™ SuperFET™ CoolFET™  $CROSSVOLT^{TM}$ i-Lo™ POP™ SuperSOT™-3 DOME™ ImpliedDisconnect™ Power247™ SuperSOT™-6 PowerEdge™ EcoSPARK™ IntelliMAX™ SuperSOT™-8 E<sup>2</sup>CMOS™ ISOPLANAR™ PowerSaver™ SyncFET™  $\mathsf{PowerTrench}^{\texttt{®}}$ LittleFET™ ТСМ™ EnSigna™ MICROCOUPLER™ QFET® FACT™ TinyBoost™  $\mathsf{FAST}^{\mathbb{R}}$ MicroFET™ QS™ TinyBuck™ TinyPWM™ FASTr™ MicroPak™ QT Optoelectronics™ TinyPower™ FPS™ MICROWIRE™ Quiet Series™ TinyLogic<sup>®</sup> FRFET™ RapidConfigure™ MSX<sup>TM</sup> MSXPro™ RapidConnect™ TINYOPTO™ µSerDes™ TruTranslation™

Across the board. Around the world.™

The Power Franchise®

Programmable Active Droop™

### DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

ScalarPump™

UHC™

### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

### As used herein:

1. Life support devices or systems are devices or systems which, 1. Life support devices or systems are devices or systems without, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

UniFET™

UltraFET®

 $VCX^{TM}$ 

Wire™

#### PRODUCT STATUS DEFINITIONS **Definition of Terms**

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                            |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.                                                                                    |
| Preliminary              | First Production          | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.                                                       |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.                                                   |

Rev. I20