

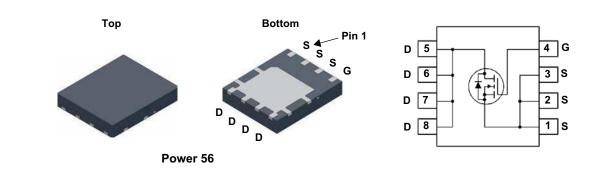
May 2009

FDMS8674 N-Channel PowerTrench[®] MOSFET

FDMS8674 N-Channel PowerTrench[®] MOSFET 30V, 21A, 5.0m Ω

Features

- Max $r_{DS(on)}$ = 5.0m Ω at V_{GS} = 10V, I_D = 17A
- Max r_{DS(on)} = 8.0mΩ at V_{GS} = 4.5V, I_D = 14A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- MSL1 robust package design
- RoHS Compliant



General Description

The FDMS8674 has been designed to minimize losses in power conversion application. Advancements in both silicon and package technologies have been combined to offer the lowest $r_{DS(on)}$ while maintaining excellent switching performance.

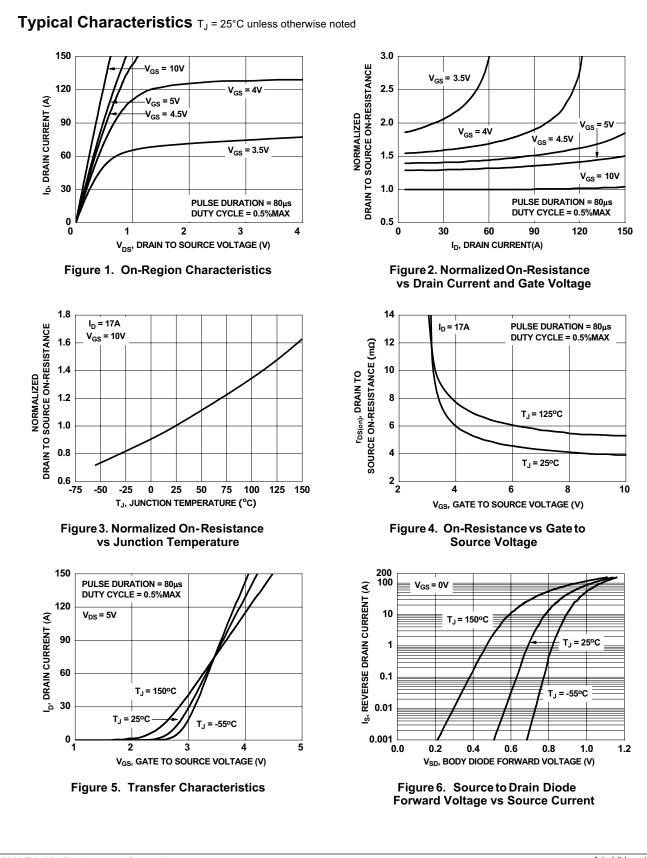
Applications

- Computing VR & IMVP Vcore
- Secondary Side Synchronous Rectifier
- POL DC/DC Converter
- Oring FET/ Load Switch

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

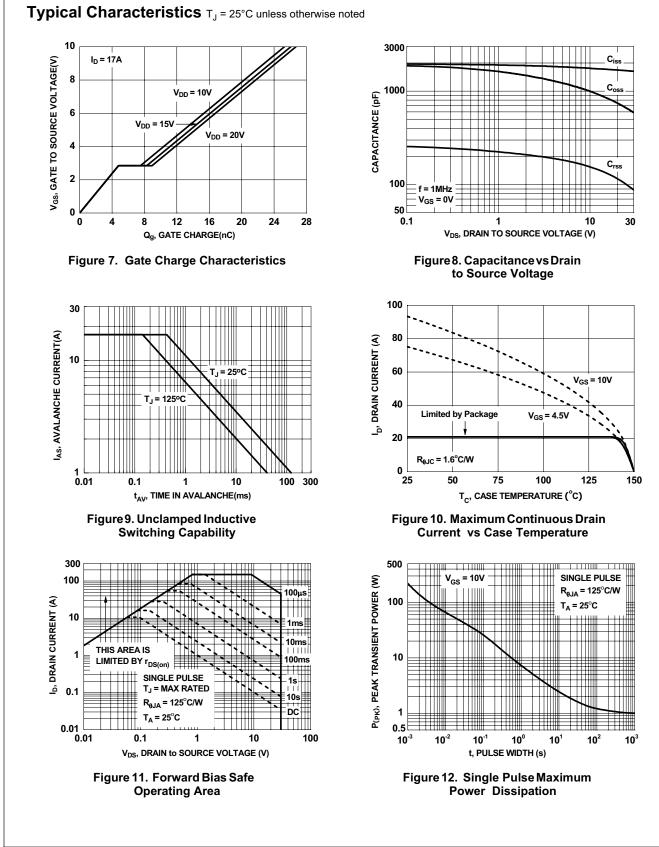
Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage			±20	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25°C		21		
	-Continuous (Silicon limited)	T _C = 25°C		94	_	
	-Continuous	T _A = 25°C	(Note 1a)	17	— A	
	-Pulsed			150		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	181	mJ	
2	Power Dissipation	T _C = 25°C		78	14/	
P _D	Power Dissipation	T _A = 25°C	(Note 1a)	2.5	W	
T _J , T _{STG}	Operating and Storage Junction Temperature Ra	ange		-55 to +150	°C	

Thermal Characteristics

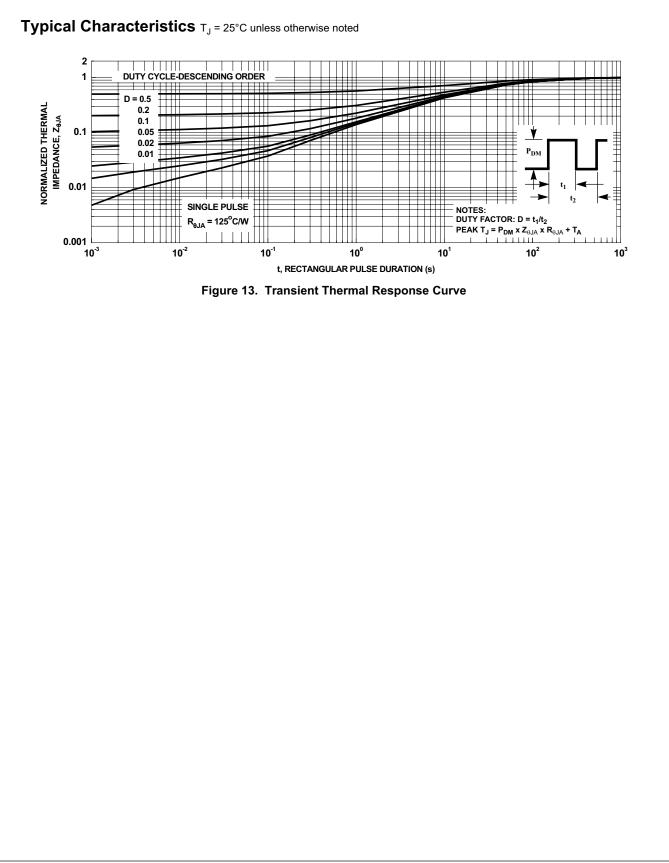

R_{θ}	JC	Thermal Resistance, Junction to Case		1.6	°C/W
R_{θ}	JA	Thermal Resistance, Junction to Ambient (No	ote 1a)	50	C/VV

Package Marking and Ordering Information

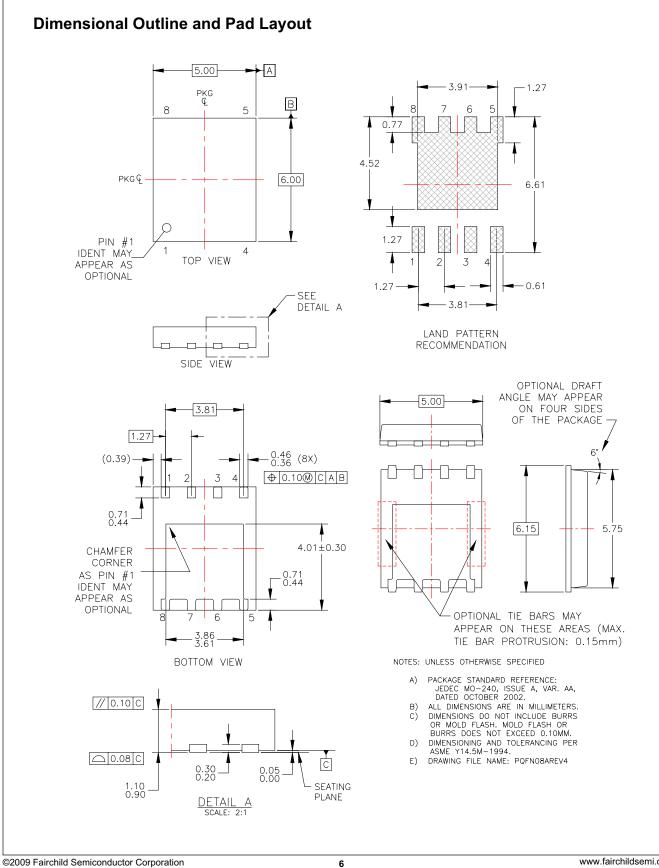
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS8674	FDMS8674	Power 56	13"	12mm	3000units


$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ $\frac{\Delta BV_{DSS}}{I_{GSS}}$ $\frac{I_{GSS}}{On \ Charac}$ $\frac{\Delta V_{GS(th)}}{\Delta T_{J}}$ $r_{DS(on)}$	Drain to Source Breakdown Voltage Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	$I_{D} = 250\mu A, V_{GS} = 0V$ $I_{D} = 250\mu A, referenced to 25°C$ $V_{DS} = 24V, V_{GS} = 0V$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_{D} = 250\mu A$ $I_{D} = 250\mu A, referenced to 25°C$ $V_{GS} = 10V, I_{D} = 17A$	30	25	1 ±100	V mV/°C μA nA
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ $\frac{\Delta BV_{DSS}}{I_{GSS}}$ $\frac{I_{GSS}}{On \ Charac}$ $\frac{V_{GS(th)}}{\Delta T_{J}}$ $r_{DS(on)}$	Breakdown Voltage Temperature Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	$I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$ $V_{DS} = 24V, V_{GS} = 0V$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_{D} = 250\mu\text{A}$ $I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$				mV/°C μA
	Coefficient Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	$I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$ $V_{DS} = 24V, V_{GS} = 0V$ $V_{GS} = \pm 20V, V_{DS} = 0V$ $V_{GS} = V_{DS}, I_{D} = 250\mu\text{A}$ $I_{D} = 250\mu\text{A}, \text{ referenced to } 25^{\circ}\text{C}$	1.0			μA
$\frac{I_{DSS}}{I_{GSS}}$ On Charac $\frac{V_{GS(th)}}{\Delta T_{J}}$ $r_{DS(on)}$	Zero Gate Voltage Drain Current Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	V_{GS} = ±20V, V_{DS} = 0V V_{GS} = V_{DS} , I_D = 250µA I_D = 250µA, referenced to 25°C	1.0	1.8		· ·
$\frac{OO}{OO} = \frac{OO}{OO} = OO$	Gate to Source Leakage Current teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	V_{GS} = ±20V, V_{DS} = 0V V_{GS} = V_{DS} , I_D = 250µA I_D = 250µA, referenced to 25°C	1.0	1.8		· ·
	teristics Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	$V_{GS} = V_{DS}$, $I_D = 250\mu A$ $I_D = 250\mu A$, referenced to 25°C	1.0	1.8		
$\frac{V_{GS(th)}}{\Delta T_J}$ rDS(on)	Gate to Source Threshold Voltage Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C	1.0	1.8		
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$ r _{DS(on)}	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C	1.0	1.0	3.0	V
ΔT _J	Temperature Coefficient				3.0	v
DO(OII)		$1/_{} = 101/_{} = 170$		-6		mV/°C
DO(OII)	Otatia Duala ta Oranza Ora Di 1			4.1	5.0	-
	Static Drain to Source On Resistance	V _{GS} = 4.5V, I _D = 14A		5.8	8.0	mΩ
		V_{GS} = 10V, I_D = 17A, T_J = 125°C		5.8	8.3	
9 _{FS}	Forward Transconductance	V _{DD} = 10V, I _D = 17A		87		S
Dynamic C	haracteristics					
	Input Capacitance			1745	2320	pF
	Output Capacitance	V _{DS} = 15V, V _{GS} = 0V,		860	1145	pF
	Reverse Transfer Capacitance	f = 1MHz		130	195	pF
133	Gate Resistance	f = 1MHz		0.9	100	Ω
		1 11112		0.0		
•	Characteristics					
t _{d(on)}	Turn-On Delay Time			11	20	ns
t _r	Rise Time	$-V_{DD} = 15V, I_D = 17A,$ $-V_{GS} = 10V, R_{GEN} = 6Ω$		4	10	ns
t _{d(off)}	Turn-Off Delay Time	\Box		26	42	ns
-	Fall Time			3	10	ns
Qg	Total Gate Charge	$V_{GS} = 0V$ to $10V$		26	37	nC
3	Total Gate Charge	$V_{GS} = 0V \text{ to } 5V$ $V_{DD} = 15V,$ $I_D = 17A$		14	20	nC
3-	Gate to Source Charge			4.8		nC
Q _{gd}	Gate to Drain "Miller" Charge			3.5		nC
Drain-Sour	ce Diode Characteristics					
V	Source to Drain Diade, Forward Valtage	V _{GS} = 0V, I _S = 2.1A (Note 2)		0.7	1.2	V
V _{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0V, I _S = 17A		0.8	1.2	V
t _{rr}	Reverse Recovery Time	L = 170 di/dt = 1000/0		40	64	ns
Q _{rr}	Reverse Recovery Charge	—I _F = 17A, di/dt = 100A/μs		30	48	nC
NOTES:				by design wh 25°C/W when		
2 Bulso Tart Buda	a 1 in ² pad	ien mounted on of 2 oz copper.	m 3	inimum pad o		
3. Starting T _J = 25°	e Width < 300μs, Duty cycle < 2.0%. °C, L = 3mH, I_{AS} = 11A, V_{DD} = 30V, V_{GS} = 10V.					oirchil-!-
9 Fairchild Semic 88674 Rev.C2	conductor Corporation	2			www.f	airchildsei

Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted


©2009 Fairchild Semiconductor Corporation FDMS8674 Rev.C2

©2009 Fairchild Semiconductor Corporation FDMS8674 Rev.C2


www.fairchildsemi.com

©2009 Fairchild Semiconductor Corporation FDMS8674 Rev.C2

FDMS8674 N-Channel PowerTrench[®] MOSFET

FDMS8674 N-Channel PowerTrench[®] MOSFET

FDMS8674 Rev.C2

www.fairchildsemi.com

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™	F-PFS™	PowerTrench [®]	The Power Franchise [®]
Build it Now™	FRFET®		the ®
CorePLUS™	Global Power Resource SM	Programmable Active Droop™	per sector franchise
CorePOWER™	Green FPS™	QFET®	 franchise
CROSSVOLT™	Green FPS™ e-Series™	QS™	TINYBOOSL
CTL™	Gmax™	Quiet Series™	TinyBuck™
Current Transfer Logic™	GTO™	RapidConfigure™	TinyLogic [®]
EcoSPARK [®]	IntelliMAX™		TINYOPTO™
EfficentMax™	ISOPLANAR™	тм	TinyPower™
EZSWITCH™ *	MegaBuck™	Saving our world, 1mW /W /kW at a time™	TinyPWM™
——2 ^{•••}	MICROCOUPLER™	SmartMax™	TinyWire™
	MicroFET™	SMART START™	TriFault Detect™
— ®	MicroPak™	SPM®	TRUECURRENT™*
+	MillerDrive™	STEALTH™	µSerDes™
Fairchild®	MotionMax™	SuperFET™	\mathcal{U}
Fairchild Semiconductor®	Motion-SPM™	SuperSOT™-3	SerDes
FACT Quiet Series™	OPTOLOGIC®	SuperSOT™-6	UHC®
FACT®	OPTOPLANAR®	SuperSOT™-8	Ultra FRFET™
FAST [®]	®	SupreMOS [™]	UniFET™
FastvCore™	U	SyncFET™	VCX™
FETBench™	PDP SPM™	Sync-Lock™	VisualMax™
FlashWriter [®] *	Power-SPM™	SYSTEM ®*	XS™
FPS™		GENERAL	
*Trademarks of System General Corr	poration, used under license by Fairchild	Semiconductor	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or 2. system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 140

Downloaded from Datasheet.su