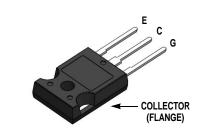
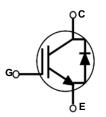
April 2013

FGH40N65UFD 650 V, 40 A Field Stop IGBT

Features


- High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.8 V @ I_C = 40 A
- High Input Impedance
- · Fast Switching
- RoHS Compliant


Applications

• Solar Inverter, UPS, Welder, PFC

General Description

Using novel field stop IGBT technology, Fairchild®'s field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description		Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		650	V	
V _{GES}	Gate to Emitter Voltage		± 20	V	
I _C	Collector Current	@ T _C = 25°C	80	А	
	Collector Current	@ T _C = 100 ^o C	40	А	
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25°C	120	А	
P _D	Maximum Power Dissipation	@ T _C = 25°C	290	W	
. D	Maximum Power Dissipation	@ T _C = 100 ^o C	116	W	
TJ	Operating Junction Temperature		-55 to +150	°C	
T _{stg}	Storage Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C	

Notes: 1: Repetitive rating: Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit	
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.43	°C/W	
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.45	°C/W	
R_{\thetaJA}	JA Thermal Resistance, Junction to Ambient		40	°C/W	

1

		Device	Package	Packaging ackage Type		Qty per Tube		Max Qty per Box	
		TO-247			30ea		-		
							4		
Electric	al Chai	racteristics of the	IGBT $T_c = 25$	5℃ unless otherwise noted					
Symbol		Parameter	Test	Conditions	Min.	Тур.	Max.	Unit	
Off Charac	teristics								
BV _{CES}		to Emitter Breakdown Volta	ge V _{GE} = 0V, I _C	= 250μΑ	650	-	-	V	
ΔBV _{CES} ΔTJ		ure Coefficient of Breakdow	in l	$V_{GE} = 0V, I_C = 250 \mu A$		0.6	-	V/ºC	
I _{CES}	Ű	Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$		-	-	250	μA	
I _{GES}	G-E Leak	age Current	V _{GE} = V _{GES}		-	-	±400	nA	
				-	+	I			
On Charac	1	shold Voltage	I _C = 250μA,	Vor = Vor	4.0	5.0	6.5	V	
· GE(m)			$I_{\rm C} = 200 \mu {\rm V},$ $I_{\rm C} = 40 {\rm A}, {\rm V}_{\rm G}$		-	1.8	2.4	v	
V _{CE(sat)}	Collector	to Emitter Saturation Voltag			-	2.0	-	v	
Dynamic C	haracteris	tics							
C _{ies}	Input Cap		Va= = 30V/	$V_{CE} = 30V$, $V_{GE} = 0V$, f = 1MHz		2110	-	pF	
C _{oes}		apacitance				200	-	pF	
C _{res}	Reverse	Transfer Capacitance				60	-	pF	
Switching	Characteri	istics							
t _{d(on)}	Turn-On Delay Time					24	-	ns	
t _r	Rise Time	9			-	44	-	ns	
t _{d(off)}	Turn-Off [Delay Time	V _{CC} = 400V,	I _C = 40A,	-	112	-	ns	
t _f	Fall Time		R _G = 10Ω, V	′ _{GE} = 15V,	-	30	60	ns	
E _{on}	Turn-On S	Switching Loss	Inductive Lo	Inductive Load, $T_C = 25^{\circ}C$		1.19	-	mJ	
E _{off}	Turn-Off S	Switching Loss			-	0.46	-	mJ	
E _{ts}	Total Swit	ching Loss			-	1.65	-	mJ	
t _{d(on)}	Turn-On I	Delay Time			-	24	-	ns	
t _r	Rise Time	9			-	45	-	ns	
t _{d(off)}	Turn-Off I	Delay Time		V _{CC} = 400V, I _C = 40A,	-	120	-	ns	
t _f	Fall Time		R _G = 10Ω, V	′ _{GE} = 15V,	-	40	-	ns	
E _{on}	Turn-On S	Switching Loss	inductive Lo	ad, T _C = 125 ^o C	-	1.2	-	mJ	
E _{off}	Turn-Off S	Switching Loss			-	0.69	-	mJ	
E _{ts}	Total Swit	ching Loss			-	1.89	-	mJ	
Qg	Total Gate	e Charge			-	120	-	nC	
Q _{ge}	Gate to E	mitter Charge	$V_{CE} = 400V,$	I _C = 40A,	-	14	-	nC	
	+			$V_{GE} = 15V$					

FGH40N65UFD 650 V, 40 A Field Stop IGBT

©2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0

FGH40N65UF
D 650
,<
10 A F
-ield :
Stop
IGBT

nC

-

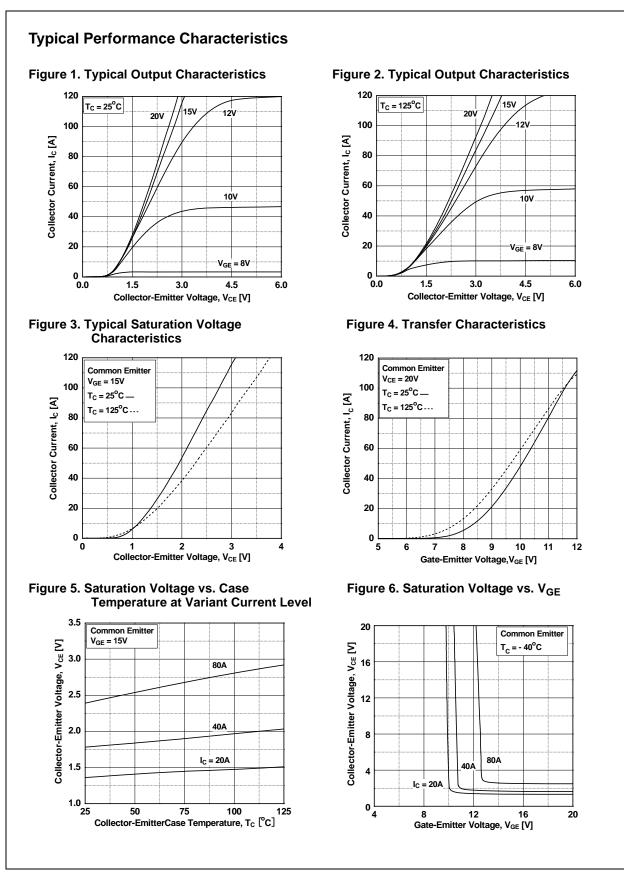
-

75

375

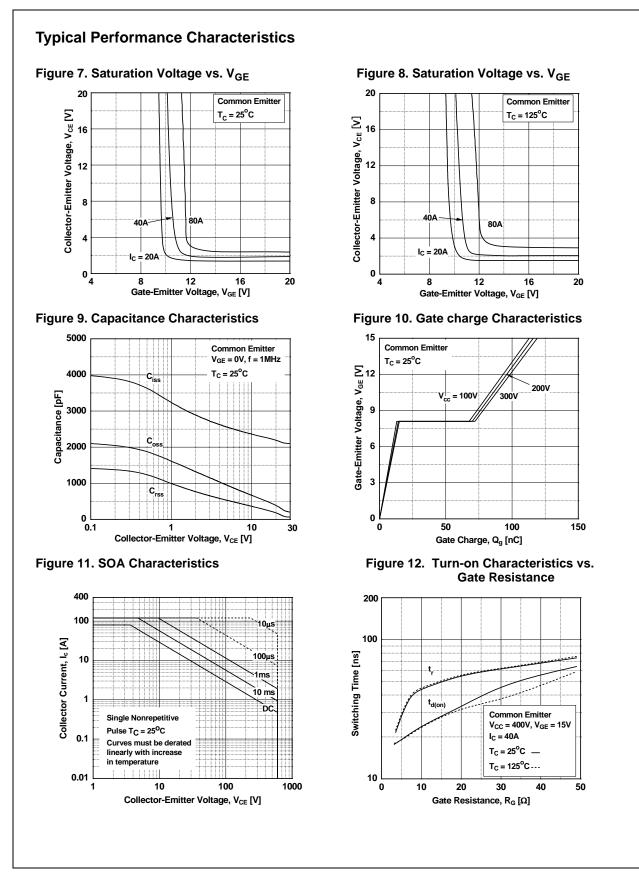
-

-

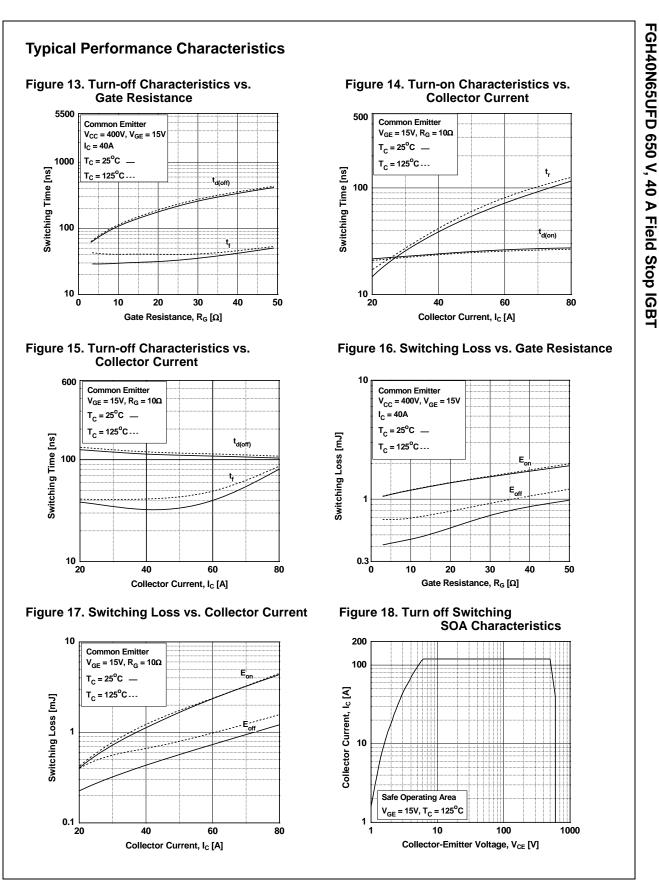

Symbol	Parameter	Test Condition	าร	Min.	Тур.	Max	Unit
V _{FM}	Diode Forward Voltage	I _F = 20A	$T_{\rm C} = 25^{\rm o}{\rm C}$	-	1.95	2.6	V
Ploud Forward Voltage	1- 20/1	$T_{C} = 125^{\circ}C$	-	1.85	-		
t _{rr} Diode Reverse Recove	Diode Reverse Recovery Time		$T_{\rm C} = 25^{\rm o}{\rm C}$	-	45	-	ns
		$l_{-} = 200$ $dl_{-} / dt = 2000 / us$	$T_{C} = 125^{\circ}C$	-	140	-	110
		I _F =20A, dI _{ES} /dt = 200A/μs	T 0500		76		

 $T_C = 25^{\circ}C$

 $T_{\rm C} = 125^{\rm o}{\rm C}$

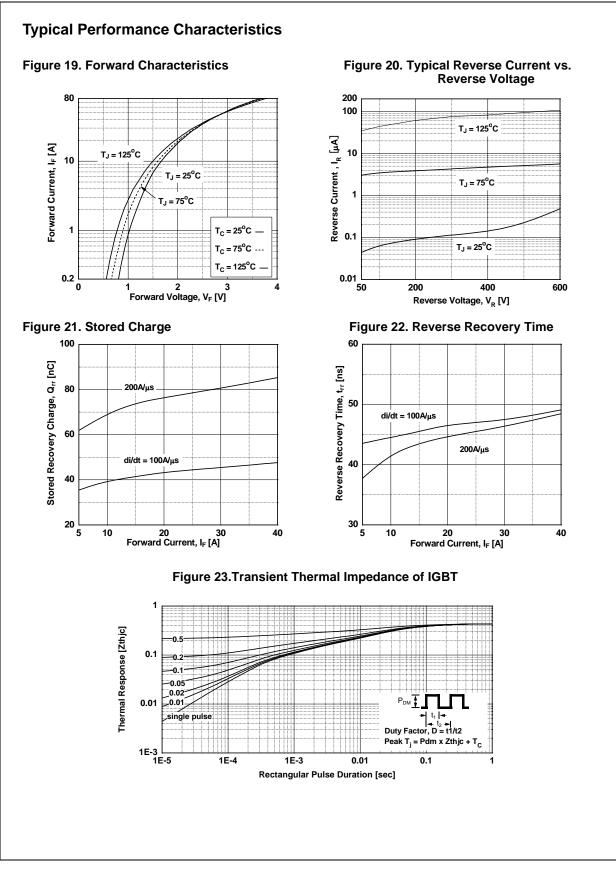

Q_{rr}

Diode Reverse Recovery Charge



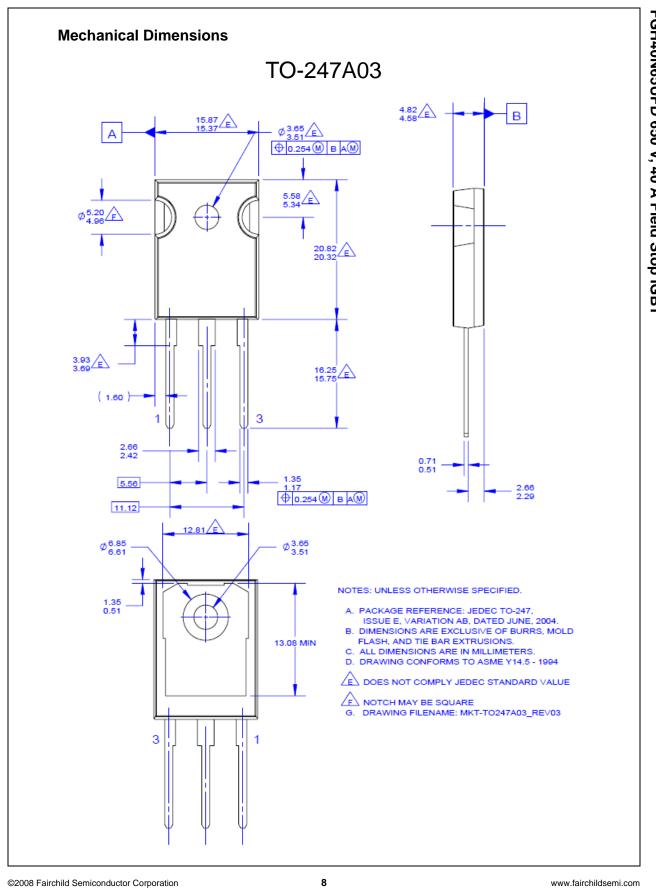
@2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0

FGH40N65UFD 650 V, 40 A Field Stop IGBT



@2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0

@2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0


Downloaded from Datasheet.su

©2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0

Downloaded from Datasheet.su

FGH40N65UFD 650 V, 40 A Field Stop IGBT

FGH40N65UFD Rev. C0

Contretenting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

©2008 Fairchild Semiconductor Corporation FGH40N65UFD Rev. C0

FGH40N65UFD 650 V, 40 A Field Stop IGBT