

May 1992 Revised March 2005

74ABT244

Octal Buffer/Line Driver with 3-STATE Outputs

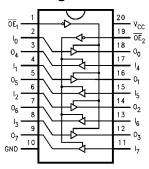
General Description

The ABT244 is an octal buffer and line driver with 3-STATE outputs designed to be employed as a memory and address driver, clock driver, or bus-oriented transmitter/

Features

- Non-inverting buffers
- Output sink capability of 64 mA, source capability of 32 mA
- Guaranteed output skew
- Guaranteed multiple output switching specifications
- Output switching specified for both 50 pF and 250 pF loads
- Guaranteed simultaneous switching, noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Nondestructive hot insertion capability
- Disable time less than enable time to avoid bus conten-

Ordering Code:


Order Number	Package Number	Package Description
74ABT244CSC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74ABT244CSJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ABT244CMSA	MSA20	20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT244CMSAX_NL MSA20 (Note 1)		Pb-Free 20-Lead Shrink Small Outline Package (SSOP), JEDEC MO-150, 5.3mm Wide
74ABT244CMTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT244CMTCX_NL MTC20 (Note 1)		Pb-Free 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ABT244CPC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Pb-Free package per JEDEC J-STD-020B.

Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.

Connection Diagram

Pin Descriptions

Pin Names	Description
$\overline{OE}_1, \overline{OE}_2$	Output Enable Input
	(Active LOW)
I ₀ –I ₇	Inputs
O ₀ -O ₇	Outputs

Truth Table

OE ₁	I ₀₋₃	O ₀₋₃	OE ₂	I ₄₋₇	O ₄₋₇
Н	Х	Z	Н	Х	Z
L	Н	Н	L	Н	Н
L	L	L	L	L	L

- H = HIGH Voltage Level
 L = LOW Voltage Level
 X = Immaterial
 Z = High Impedance

Absolute Maximum Ratings(Note 2)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65\mbox{°C to } +150\mbox{°C} \\ \mbox{Ambient Temperature under Bias} & -55\mbox{°C to } +125\mbox{°C} \\ \end{array}$

 $\begin{array}{lll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

Voltage Applied to Any Output

in the Disabled or

Power-Off State -0.5V to 5.5V in the HIGH State -0.5V to V_{CC}

Current Applied to Output

in LOW State (Max) ${\rm twice \ the \ rated \ I_{OL} \ (mA)}$ DC Latchup Source Current $-500 \ {\rm mA}$

Over Voltage Latchup (I/O) 10V

Recommended Operating Conditions

Free Air Ambient Temperature -40°C to +85°C Supply Voltage +4.5V to +5.5V

Minimum Input Edge Rate ($\Delta V/\Delta t$)

Data Input 50 mV/ns
Enable Input 20 mV/ns

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation

under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Param	eter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized HIGH Signal
V _{IL}	Input LOW Voltage				8.0	V		Recognized LOW Signal
V _{CD}	Input Clamp Diode Vo	oltage			-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage		2.5			V	Min	I _{OH} = -3 mA
			2.0			V	Min	I _{OH} = -32 mA
V _{OL}	Output LOW Voltage				0.55			I _{OL} = 64 mA
I _{IH}	Input HIGH Current				1	μА	Max	V _{IN} = 2.7V (Note 5)
					1			$V_{IN} = V_{CC}$
I _{BVI}	Input HIGH Current B	reakdown Test			7	μА	Max	V _{IN} = 7.0V
I _{IL}	Input LOW Current				-1	μА	Max	V _{IN} = 0.5V (Note 5)
					-1	μΛ	IVIAX	$V_{IN} = 0.0V$
V _{ID}	Input Leakage Test		4.75			V	0.0	I _{ID} = 1.9 μA
								All Other Pins Grounded
I _{OZH}	Output Leakage Curre	ent			10	μА	0 – 5.5V	$V_{OUT} = 2.7V; \overline{OE}_n = 2.0V$
I _{OZL}	Output Leakage Curre	ent			-10	μА	0 – 5.5V	$V_{OUT} = 0.5V; \overline{OE}_n = 2.0V$
Ios	Output Short-Circuit C	Current	-100		-275	mA	Max	V _{OUT} = 0.0V
I _{CEX}	Output High Leakage	Current			50	μА	Max	V _{OUT} = V _{CC}
I _{ZZ}	Bus Drainage Test				100	μА	0.0	V _{OUT} = 5.5V; All Others GND
I _{CCH}	Power Supply Curren	t			50	μА	Max	All Outputs HIGH
I _{CCL}	Power Supply Curren	t			30	mA	Max	All Outputs LOW
I _{CCZ}	Power Supply Curren	t			50	μА	Max	$\overline{OE}_n = V_{CC}$
								All Others at V _{CC} or Ground
I _{CCT}	Additional I _{CC} /Input	Outputs Enabled			2.5	mA		$V_{I} = V_{CC} - 2.1V$
		Outputs 3-STATE			2.5	mA	Max	Enable Input V _I = V _{CC} - 2.1V
		Outputs 3-STATE			50	μА		Data Input V _I = V _{CC} - 2.1V
								All Others at V _{CC} or Ground
I _{CCD}	Dynamic I _{CC}	No Load				mA/	Mari	Outputs OPEN
	(Note 5)				0.1	MHz	Max	$\overline{OE}_n = GND$, (Note 4)
								One Bit Toggling, 50% Duty Cycle

Note 4: For 8 bits toggling, $I_{CCD} < 0.8 \text{ mA/MHz}.$

Note 5: Guaranteed, but not tested.

DC Electrical Characteristics

(SOIC package)

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions $C_L = 50 \text{ pF},$ $R_L = 500 \Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}		0.5	0.8	V	5.0	T _A = 25°C (Note 6)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-1.3	-0.8		V	5.0	T _A = 25°C (Note 6)
V _{OHV}	Minimum HIGH Level Dynamic Output Voltage	2.7	3.1		V	5.0	T _A = 25°C (Note 8)
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	2.0	1.5		V	5.0	T _A = 25°C (Note 7)
V _{ILD}	Maximum LOW Level Dynamic Input Voltage		1.1	0.8	V	5.0	T _A = 25°C (Note 7)

Note 6: Max number of outputs defined as (n). n – 1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

Note 7: Max number of data inputs (n) switching. n – 1 inputs switching 0V to 3V. Input-under-test switching: 3V to threshold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 8: Max number of outputs defined as (n). n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics

(SOIC and SSOP package)

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5V$ $C_L = 50 \text{ pF}$		$T_A = -55^{\circ}\text{C to } +125^{\circ}\text{C}$ $V_{CC} = 4.5\text{V} - 5.5\text{V}$ $C_L = 50 \text{ pF}$		$T_A = -40$ °C to $+85$ °C $V_{CC} = 4.5V - 5.5V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	1.0	2.5	3.6	1.0	5.3	1.0	3.6	ne
t _{PHL}	Data to Outputs	1.0	2.3	3.6	1.0	5.0	1.0	3.6	ns
t _{PZH}	Output Enable	1.5	3.5	6.0	0.8	6.5	1.5	6.0	
t _{PZL}	Time	1.5	3.6	6.0	1.2	7.9	1.5	6.0	ns
t _{PHZ}	Output Disable	1.7	3.5	5.6	1.2	7.6	1.7	5.6	ns
t_{PLZ}	Time	1.7	3.3	5.6	1.0	7.9	1.7	5.6	115

Extended AC Electrical Characteristics

(SOIC package)

Symbol	Parameter	T_A -40°C to +85°C V_{CC} = 4.5V-5.5V C_L = 50 pF 8 Outputs Switching (Note 9)		V _{CC} = 4. C _L = 2 1 Output	C to +85°C 5V-5.5V 250 pF Switching e 10)	$T_{A} = -40 ^{\circ}\text{C to} +85 ^{\circ}\text{C}$ $V_{CC} = 4.5 \text{V} -5.5 \text{V}$ $C_{L} = 250 \text{ pF}$ 8 Outputs Switching (Note 11)		Units	
		Min	Тур	Max	Min	Max	Min	Max	
f _{TOGGLE}	Max Toggle Frequency		100						MHz
t _{PLH}	Propagation Delay	1.5		5.0	1.5	6.0	2.5	8.5	ns
t _{PHL}	Data to Outputs	1.5		5.0	1.5	6.0	2.5	8.5	113
t _{PZH}	Output Enable Time	1.5		6.5	2.5	7.5	2.5	10.0	20
t _{PZL}		1.5		6.5	2.5	7.5	2.5	12.0	ns
t _{PHZ}	Output Disable Time	1.0		5.6	(Note 12)		(Note 12)		ne
t_{PLZ}		1.0		5.6					ns

Note 9: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 10: This specification is guaranteed but not tested. The limits represent propagation delay with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 11: This specification is guaranteed but not tested. The limits represent propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.) with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.

 $\textbf{Note 12:} \ \text{The 3-STATE delays are dominated by the RC network (500} \Omega, 250 \ \text{pF)} \ \text{on the output and have been excluded from the datasheet.}$

Skew

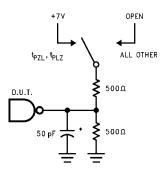
Symbol	Parameter	T _A = -40°C to +85°C V _{CC} = 4.5V-5.5V C _L = 50 pF 8 Outputs Switching (Note 15) Max	T _A = -40 °C to +85 °C V _{CC} = 4.5V-5.5V C _L = 250 pF 8 Outputs Switching (Note 16) Max	Units
t _{OSHL} (Note 13)	Pin to Pin Skew HL Transitions	0.8	1.8	ns
t _{OSLH} (Note 13)	Pin to Pin Skew LH Transitions	0.8	1.8	ns
t _{PS} (Note 17)	Duty Cycle LH–HL Skew	1.0	2.5	ns
t _{OST} (Note 13)	Pin to Pin Skew LH/HL Transitions	1.0	2.5	ns
t _{PV} (Note 14)	Device to Device Skew LH/HL Transitions	1.5	3.0	ns

Note 13: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (tooshL), LOW-to-HIGH (tooshH), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (toosh). The specification is guaranteed but not tested.

Note 14: Propagation delay variation for a given set of conditions (i.e., temperature and V_{CC}) from device to device. This specification is guaranteed but not tested

Note 15: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.)

Note 16: These specifications guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load.


Note 17: This describes the difference between the delay of the LOW-to-HIGH and the HIGH-to-LOW transition on the same pin. It is measured across all the outputs (drivers) on the same chip, the worst (largest delta) number is the guaranteed specification. This specification is guaranteed but not tested.

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5.0	pF	V _{CC} = 0V
C _{OUT} (Note 18)	Output Capacitance	9.0	pF	V _{CC} = 5.0V

Note 18: C_{OUT} is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

AC Loading

*Includes jig and probe capacitance

FIGURE 1. Standard AC Test Load

AC Waveforms

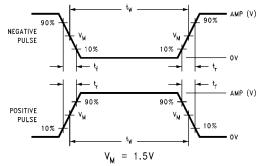


FIGURE 2. Test Input Signal Levels

Amplitude	Rep. Rate	t _W	t _r	t _f	
3.0V	1 MHz	500 ns	2.5 ns	2.5 ns	

FIGURE 3. Test Input Signal Requirements

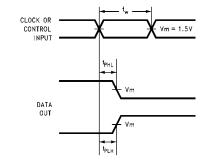


FIGURE 4. Propagation Delay, Pulse Width Waveforms

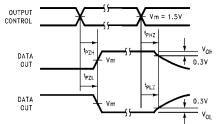


FIGURE 5. 3-STATE Output HIGH and LOW Enable and Disable Times

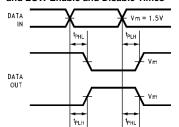


FIGURE 6. Propagation Delay Waveforms for Inverting and Non-Inverting Functions

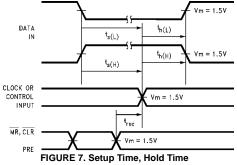
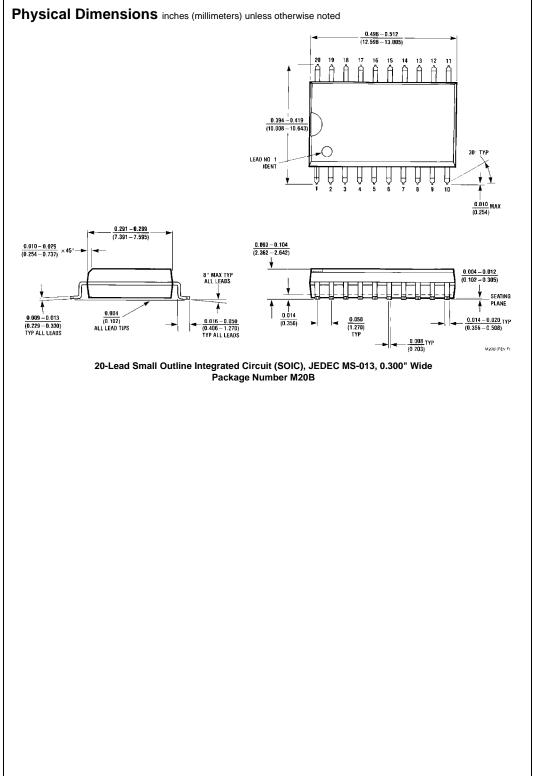
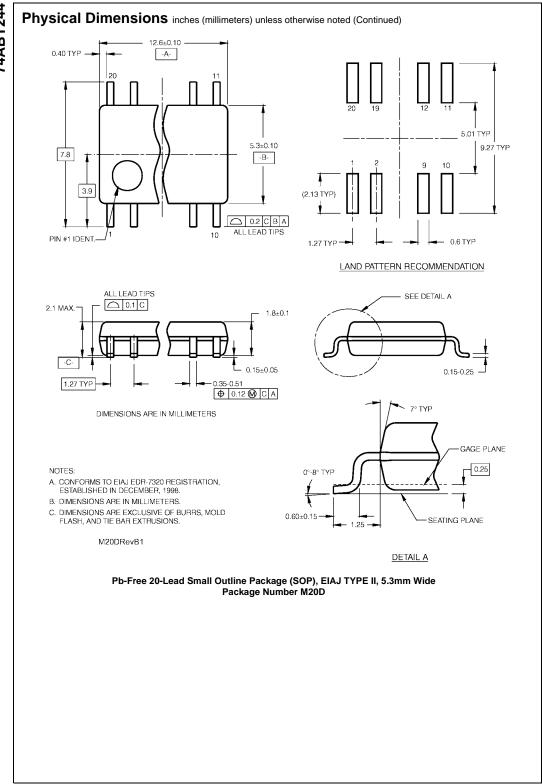
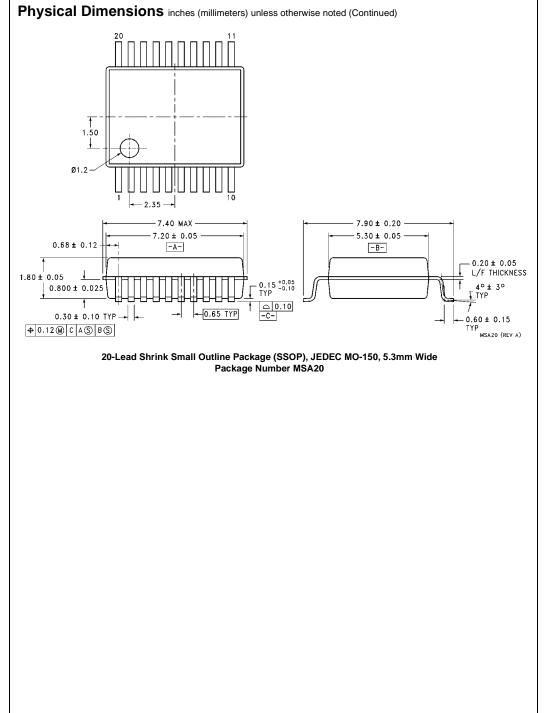
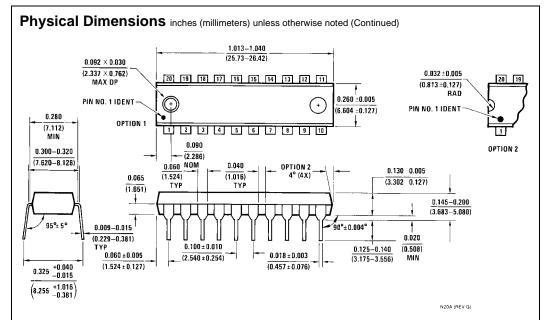





FIGURE 7. Setup Time, Hold Time and Recovery Time Waveforms


www.fairchildsemi.com

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 64 4.4±0.1 -B-ALL LEAD TIPS PIN #1 IDENT. LAND PATTERN RECOMMENDATION SEE DETAIL A C0.90+0.15 12.00° R0.09min GAGE PLANE DIMENSIONS ARE IN MILLIMETERS NOTES: A. CONFORMS TO JEDEC REGISTRATION MID-153, VARIATION AC, REF NOTE 6. DATE 7/93.-0.6±0.1-R0.09min B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLDS FLASH, AND THE BAR EXTRUSIONS. DETAIL A D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. MTC20REVD1 20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC20

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com