# DAC0800/DAC0801/DAC0802 8-Bit Digital-to-Analog Converters

#### **General Description**

The DAC0800 series are monolithic 8-bit high-speed current-output digital-to-analog converters (DAC) featuring typical settling times of 100 ns. When used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range is possible. The DAC0800 series also features high compliance complementary current outputs to allow differential output voltages of 20 Vp-p with simple resistor loads as shown in Figure~1. The reference-to-full-scale current matching of better than  $\pm 1$  LSB eliminates the need for full-scale trins in most applications while the nonlinearities of better than  $\pm 0.1\%$  over temperature minimizes system error accumulations.

The noise immune inputs of the DAC0800 series will accept TTL levels with the logic threshold pin, V<sub>LC</sub>, grounded. Changing the V<sub>LC</sub> potential will allow direct interface to other logic families. The performance and characteristics of the device are essentially unchanged over the full  $\pm 4.5 \text{V}$  to  $\pm 18 \text{V}$  power supply range; power dissipation is only 33 mW with  $\pm 5 \text{V}$  supplies and is independent of the logic input states.

The DAC0800, DAC0802, DAC0800C, DAC0801C and DAC0802C are a direct replacement for the DAC-08, DAC-08A, DAC-08C, DAC-08E and DAC-08H, respectively.

#### **Features**

Fast settling output current
 Full scale error
 Nonlinearity over temperature
 Full scale current drift
 ± 10 ppm/°C

- High output compliance −10V to +18V
- Complementary current outputs
- Interface directly with TTL, CMOS, PMOS and others
- 2 quadrant wide range multiplying capability
- Wide power supply range ±4.5V to ±18V
- Low power consumption 33 mW at ±5V
- Low cost

# **Typical Applications**

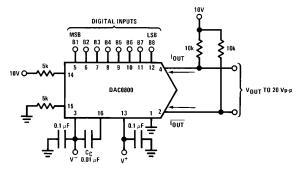



FIGURE 1.  $\pm$  20 V<sub>P-P</sub> Output Digital-to-Analog Converter (Note 4)

#### **Ordering Information**

| Non-Linearity | Temperature                                                            |            |          | Order Numb | ers      |                   |  |  |
|---------------|------------------------------------------------------------------------|------------|----------|------------|----------|-------------------|--|--|
| Non-Emeanty   | Range                                                                  | J Package  | (J16A)*  | N Package  | (N16A)*  | SO Package (M16A) |  |  |
| ±0.1% FS      | $0^{\circ}\text{C} \le \text{T}_{\text{A}} \le +70^{\circ}\text{C}$    | DAC0802LCJ | DAC-08HQ | DAC0802LCN | DAC-08HP | DAC0802LCM        |  |  |
| ±0.19% FS     | $-55^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$ | DAC0800LJ  | DAC-08Q  |            |          |                   |  |  |
| ±0.19% FS     | $0^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq +70^{\circ}\text{C}$  | DAC0800LCJ | DAC-08EQ | DAC0800LCN | DAC-08EP | DAC0800LCM        |  |  |
| ±0.39% FS     | $0^{\circ}C \leq T_{A} \leq +70^{\circ}C$                              |            |          | DAC0801LCN | DAC-08CP | DAC0801LCM        |  |  |

<sup>\*</sup>Devices may be ordered by using either order number.

© 1995 National Semiconductor Corporation TL/H/56

RRD-B30M115/Printed in U. S. A.

TL/H/5686-1

#### **Absolute Maximum Ratings** (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Supply Voltage ( $V^+ - V^-$ )  $\pm\,$ 18V or 36V Power Dissipation (Note 2) 500 mW Reference Input Differential Voltage (V14 to V15)  $V^-$  to  $V^+$ Reference Input Common-Mode Range  $V^-$  to  $V^+$ (V14, V15) Reference Input Current 5 mA Logic Inputs V- to V- plus 36V Analog Current Outputs ( $V_S^- = -15V$ ) ESD Susceptibility (Note 3) 4.25 mA TBD V

Storage Temperature

Lead Temp. (Soldering, 10 seconds)

Dual-In-Line Package (plastic) 260°C

Dual-In-Line Package (ceramic) 300°C

Surface Mount Package

Vapor Phase (60 seconds) 215°C

Infrared (15 seconds) 220°C

# Operating Conditions (Note 1)

|                               | Min | Max  | Units |
|-------------------------------|-----|------|-------|
| Temperature (T <sub>A</sub> ) |     |      |       |
| DAC0800L                      | -55 | +125 | °C    |
| DAC0800LC                     | 0   | +70  | °C    |
| DAC0801LC                     | 0   | +70  | °C    |
| DAC0802LC                     | 0   | +70  | °C    |

**Electrical Characteristics** The following specifications apply for  $V_S = \pm 15V$ ,  $I_{REF} = 2$  mA and  $T_{MIN} \le T_A \le T_{MAX}$  unless otherwise specified. Output characteristics refer to both  $I_{OUT}$  and  $\overline{I_{OUT}}$ .

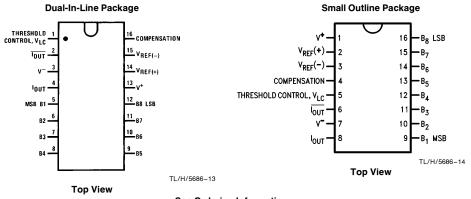
-65°C to +150°C

| ropagation Delay<br>Each Bit<br>All Bits Switched<br>full Scale Tempco                                 | To $\pm$ ½ LSB, All Bits Switched "ON" or "OFF", T <sub>A</sub> = 25°C DAC0800L DAC0800LC T <sub>A</sub> = 25°C                                                                                                                                                          | Min<br>8<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8<br>8<br>8                                            | 8<br>8<br>±0.1<br>135                                  | Min<br>8<br>8                                          | 8<br>8<br>8                                            | 8<br>8<br>±0.19                                        | 8<br>8                                                 | 8<br>8<br>8                                            | 8<br>8<br>±0.39                                        | Bits<br>Bits<br>%FS<br>ns                              |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|
| Monotonicity Ionlinearity Settling Time Propagation Delay Each Bit All Bits Switched Sull Scale Tempco | "ON" or "OFF", T <sub>A</sub> =25°C<br>DAC0800L<br>DAC0800LC                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100                                                    | 8<br>±0.1                                              | -                                                      | 8                                                      | 8<br>±0.19                                             | 8                                                      | 8                                                      | 8<br>±0.39                                             | Bits<br>%FS                                            |
| ropagation Delay<br>Each Bit<br>All Bits Switched<br>full Scale Tempco                                 | "ON" or "OFF", T <sub>A</sub> =25°C<br>DAC0800L<br>DAC0800LC                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        | 135                                                    |                                                        | 100                                                    | 125                                                    |                                                        | 100                                                    | 150                                                    | ns                                                     |
| Each Bit<br>All Bits Switched<br>full Scale Tempco                                                     | T <sub>A</sub> =25°C                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                        |                                                        |                                                        | 100                                                    | 150                                                    |                                                        |                                                        |                                                        | ns<br>ns                                               |
| <u> </u>                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35<br>35                                               | 60<br>60                                               |                                                        | 35<br>35                                               | 60<br>60                                               |                                                        | 35<br>35                                               | 60<br>60                                               | ns<br>ns                                               |
| Output Voltage Compliance                                                                              |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±10                                                    | ±50                                                    |                                                        | ±10                                                    | ±50                                                    |                                                        | ±10                                                    | ±80                                                    | ppm/°C                                                 |
|                                                                                                        | Full Scale Current Change <1/2 LSB, R <sub>OUT</sub> > 20 MΩ Typ                                                                                                                                                                                                         | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 18                                                     | -10                                                    |                                                        | 18                                                     | -10                                                    |                                                        | 18                                                     | ٧                                                      |
|                                                                                                        | $V_{REF} = 10.000V, R14 = 5.000 k\Omega$<br>R15 = 5.000 k $\Omega$ , $T_A = 25$ °C                                                                                                                                                                                       | 1.984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.992                                                  | 2.000                                                  | 1.94                                                   | 1.99                                                   | 2.04                                                   | 1.94                                                   | 1.99                                                   | 2.04                                                   | mA                                                     |
| ull Scale Symmetry                                                                                     | I <sub>FS4</sub> -I <sub>FS2</sub>                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ±0.5                                                   | ±4.0                                                   |                                                        | ±1                                                     | ±8.0                                                   |                                                        | ±2                                                     | ±16                                                    | μΑ                                                     |
| ero Scale Current                                                                                      |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1                                                    | 1.0                                                    |                                                        | 0.2                                                    | 2.0                                                    |                                                        | 0.2                                                    | 4.0                                                    | μΑ                                                     |
|                                                                                                        | $V^{-} = -5V$<br>$V^{-} = -8V$ to $-18V$                                                                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0<br>2.0                                             | 2.1<br>4.2                                             | 0                                                      | 2.0<br>2.0                                             | 2.1<br>4.2                                             | 0                                                      | 2.0<br>2.0                                             | 2.1<br>4.2                                             | mA<br>mA                                               |
| ogic Input Levels<br>Logic ''0''<br>Logic ''1''                                                        | V <sub>LC</sub> =0V                                                                                                                                                                                                                                                      | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 0.8                                                    | 2.0                                                    |                                                        | 0.8                                                    | 2.0                                                    |                                                        | 0.8                                                    | V<br>V                                                 |
| Logic "0"                                                                                              | $V_{LC} = 0V$<br>- $10V \le V_{IN} \le +0.8V$<br>$2V \le V_{IN} \le +18V$                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.0<br>0.002                                          | -10<br>10                                              |                                                        | -2.0<br>0.002                                          | -10<br>10                                              |                                                        | -2.0<br>0.002                                          | -10<br>10                                              | μΑ<br>μΑ                                               |
| ogic Input Swing                                                                                       | V-=-15V                                                                                                                                                                                                                                                                  | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 18                                                     | -10                                                    |                                                        | 18                                                     | -10                                                    |                                                        | 18                                                     | V                                                      |
| ogic Threshold Range                                                                                   | $V_S = \pm 15V$                                                                                                                                                                                                                                                          | -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | 13.5                                                   | -10                                                    |                                                        | 13.5                                                   | -10                                                    |                                                        | 13.5                                                   | V                                                      |
| Reference Bias Current                                                                                 |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -1.0                                                   | -3.0                                                   |                                                        | -1.0                                                   | -3.0                                                   |                                                        | -1.0                                                   | -3.0                                                   | μΑ                                                     |
| Reference Input Slew Rate                                                                              | (Figure 12)                                                                                                                                                                                                                                                              | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.0                                                    |                                                        | 4.0                                                    | 8.0                                                    |                                                        | 4.0                                                    | 8.0                                                    |                                                        | mA/μs                                                  |
| ower Supply Sensitivity                                                                                | $4.5V\!\leq\!V+\leq\!18V$                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0001                                                 | 0.01                                                   |                                                        | 0.0001                                                 | 0.01                                                   |                                                        | 0.0001                                                 | 0.01                                                   | %/%                                                    |
|                                                                                                        | $-4.5V \le V^- \le 18V$<br>$I_{REF} = 1 \text{mA}$                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0001                                                 | 0.01                                                   |                                                        | 0.0001                                                 | 0.01                                                   |                                                        | 0.0001                                                 | 0.01                                                   | %/%                                                    |
| ower Supply Current                                                                                    | $V_S = \pm 5V$ , $I_{REF} = 1$ mA                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.3<br>-4.3                                            | 3.8<br>-5.8                                            |                                                        | 2.3<br>-4.3                                            | 3.8<br>-5.8                                            |                                                        | 2.3<br>-4.3                                            | 3.8<br>-5.8                                            | mA<br>mA                                               |
|                                                                                                        | $V_S = 5V, -15V, I_{REF} = 2 \text{ mA}$                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.4<br>-6.4                                            | 3.8<br>-7.8                                            |                                                        | 2.4<br>-6.4                                            | 3.8<br>-7.8                                            |                                                        | 2.4<br>-6.4                                            | 3.8<br>-7.8                                            | mA<br>mA                                               |
|                                                                                                        | $V_S = \pm 15V$ , $I_{REF} = 2 \text{ mA}$                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.5                                                    | 3.8                                                    |                                                        | 2.5                                                    | 3.8                                                    |                                                        | 2.5                                                    | 3.8<br>-7.8                                            | mA<br>mA                                               |
| (e)                                                                                                    | ull Scale Current  ull Scale Symmetry ero Scale Current utput Current Range  ogic Input Levels Logic "0" Logic "1"  ogic Input Current Logic "0" Logic "1"  ogic Input Swing ogic Threshold Range eference Bias Current eference Input Slew Rate ower Supply Sensitivity | $<\frac{1}{2} LSB, R_{OUT}>20 \ M\Omega \ Typ$ $V_{REF}=10.000V, R14=5.000 \ k\Omega \ R15=5.000 \ k\Omega, T_A=25^{\circ}C$ Jull Scale Symmetry $I_{FS4}-I_{FS2}$ $I_{FS4}-I_{FS$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

#### **Electrical Characteristics** (Continued)

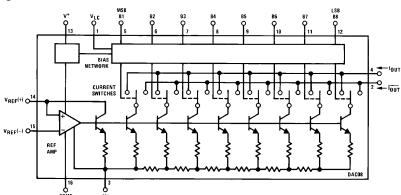
The following specifications apply for  $V_S=\pm 15$ V,  $I_{REF}=2$  mA and  $I_{MIN}\leq I_{A}\leq I_{MAX}$  unless otherwise specified. Output characteristics refer to both  $I_{OUT}$  and  $I_{OUT}$ .

| Symbol         | Parameter         | Conditions                         | D   | DAC0802LC |     |     | AC0800<br>AC0800 |     | D   | Units |     |    |
|----------------|-------------------|------------------------------------|-----|-----------|-----|-----|------------------|-----|-----|-------|-----|----|
|                |                   |                                    | Min | Тур       | Max | Min | Тур              | Max | Min | Тур   | Max |    |
| P <sub>D</sub> | Power Dissipation | ±5V, I <sub>REF</sub> =1 mA        |     | 33        | 48  |     | 33               | 48  |     | 33    | 48  | mW |
|                |                   | 5V, -15V, I <sub>REF</sub> = 2 mA  |     | 108       | 136 |     | 108              | 136 |     | 108   | 136 | mW |
|                |                   | $\pm$ 15V, I <sub>BFF</sub> = 2 mA |     | 135       | 174 |     | 135              | 174 |     | 135   | 174 | mW |


Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating conditions.

Note 2: The maximum junction temperature of the DAC0800, DAC0801 and DAC0802 is 125°C. For operating at elevated temperatures, devices in the Dual-In-Line J package must be derated based on a thermal resistance of 100°C/W, junction-to-ambient, 175°C/W for the molded Dual-In-Line N package and 100°C/W for the Small Outline M package.

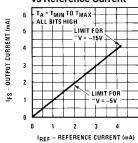
Note 3: Human body model, 100 pF discharged through a 1.5 k $\Omega$  resistor.

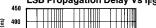

Note 4: Pin-out numbers for the DAC080X represent the Dual-In-Line package. The Small Outline package pin-out differs from the Dual-In-Line package.

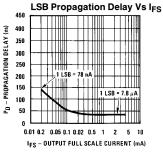
#### **Connection Diagrams**



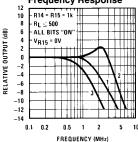
## See Ordering Information


## **Block Diagram** (Note 4)





TL/H/5686-2

## **Typical Performance Characteristics**

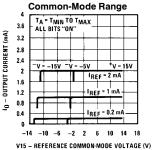

#### **Full Scale Current** vs Reference Current



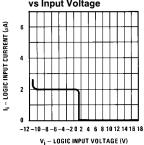




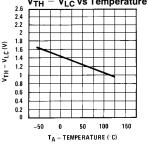
#### Reference Input Frequency Response




Curve 1: C<sub>C</sub>=15 pF, V<sub>IN</sub>=2 Vp-p centered at 1V.

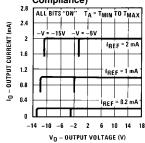

Curve 2:  $C_C = 15$  pF,  $V_{IN} = 50$  mVp-p centered at 200 mV.

Curve 3:  $C_C = 0$  pF,  $V_{IN} = 100$  mVp-p at 0V and applied through 50  $\Omega$  connected to pin 14.2V applied to R14.

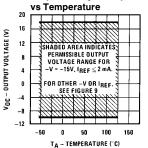

## Reference Amp



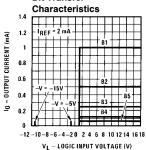
**Logic Input Current** vs Input Voltage




**V<sub>LC</sub>** vs Temperature



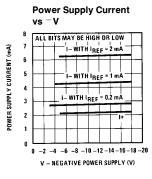

Note. Positive common-mode range is always (V+) - 1.5V

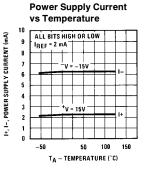

#### **Output Current vs Output** Voltage (Output Voltage Compliance)



# **Output Voltage Compliance**




#### Bit Transfer




TL/H/5686-3

Note. B1-B8 have identical transfer characteristics. Bits are fully switched with less than 1/2 LSB error, at less than  $\pm\,100$  mV from actual threshold. These switching points are guaranteed to lie between 0.8 and 2V over the operating temperature range ( $V_{LC} = 0V$ ).

## **Typical Performance Characteristics** (Continued)





TL/H/5686-4

## **Equivalent Circuit**

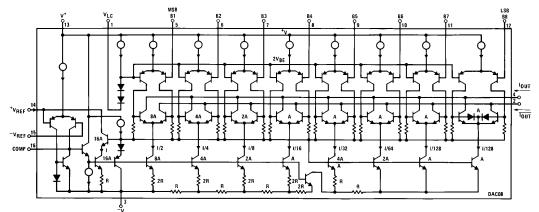
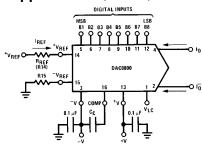
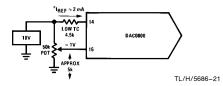




FIGURE 2

TL/H/5686-15

## Typical Applications (Continued)



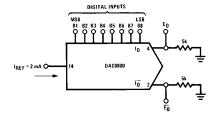



$$\begin{split} I_{FS} &\approx \frac{+V_{REF}}{R_{REF}} \times \frac{255}{256} \\ I_O &+ \overline{I_O} = I_{FS} \text{ for all } \\ logic states \\ For fixed reference, TTL operation, typical values are: \\ V_{REF} &= 10.000V \\ R_{REF} &= 5.000k \end{split}$$

 $\begin{array}{l} \text{R15} \approx \, \text{R}_{\text{REF}} \\ \text{C}_{\text{C}} = \, \text{0.01} \,\, \mu\text{F} \\ \text{V}_{\text{LC}} = \, \text{0V (Ground)} \end{array}$ 

TL/H/5686-5 FIGURE 3. Basic Positive Reference Operation (Note 4)




PREF 14 DAC0800 TL/H/5686-16

 $I_{FS} \approx \frac{-V_{REF}}{R_{RFF}} \times \frac{255}{256}$  Note.  $R_{REF}$  sets  $I_{FS}$ ; R15 is for bias current cancellation

FIGURE 4. Recommended Full Scale Adjustment Circuit (Note 4)

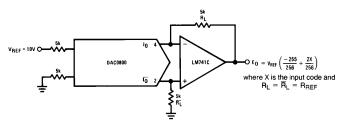
FIGURE 5. Basic Negative Reference Operation (Note 4)

# Typical Applications (Continued)



TL/H/5686-17

|                  | В1 | B2 | В3 | В4 | В5 | В6 | В7 | В8 | I <sub>O</sub> mA | l <sub>O</sub> mA | Eo     | ΕO     |
|------------------|----|----|----|----|----|----|----|----|-------------------|-------------------|--------|--------|
| Full Scale       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1.992             | 0.000             | -9.960 | 0.000  |
| Full Scale – LSB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | 1.984             | 0.008             | -9.920 | -0.040 |
| Half Scale + LSB | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1.008             | 0.984             | -5.040 | -4.920 |
| Half Scale       | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1.000             | 0.992             | -5.000 | -4.960 |
| Half Scale - LSB | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0.992             | 1.000             | -4.960 | -5.000 |
| Zero Scale + LSB | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 0.008             | 1.984             | -0.040 | -9.920 |
| Zero Scale       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0.000             | 1.992             | 0.000  | -9.960 |


FIGURE 6. Basic Unipolar Negative Operation (Note 4)

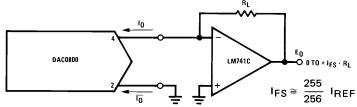


TL/H/5686-6

|                       | В1 | B2 | В3 | В4 | В5 | В6 | В7 | В8 | Eo      | ΕO      |
|-----------------------|----|----|----|----|----|----|----|----|---------|---------|
| Pos. Full Scale       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -9.920  | +10.000 |
| Pos. Full Scale - LSB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | -9.840  | +9.920  |
| Zero Scale + LSB      | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -0.080  | +0.160  |
| Zero Scale            | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0.000   | +0.080  |
| Zero Scale-LSB        | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | +0.080  | 0.000   |
| Neg. Full Scale + LSB | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | + 9.920 | -9.840  |
| Neg. Full Scale       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | +10.000 | -9.920  |

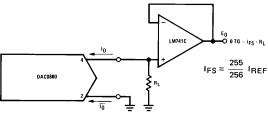
FIGURE 7. Basic Bipolar Output Operation (Note 4)




TL/H/5686-18

If  $R_L = \overline{R_L}$  within  $\pm 0.05\%$  , output is symmetrical about ground

|                       | В1 | B2 | В3 | В4 | В5 | В6 | В7 | В8 | Eo     |
|-----------------------|----|----|----|----|----|----|----|----|--------|
| Pos. Full Scale       | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | +9.960 |
| Pos. Full Scale – LSB | 1  | 1  | 1  | 1  | 1  | 1  | 1  | 0  | +9.880 |
| (+)Zero Scale         | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | +0.040 |
| (-)Zero Scale         | 0  | 1  | 1  | 1  | 1  | 1  | 1  | 1  | -0.040 |
| Neg. Full Scale + LSB | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | -9.880 |
| Neg. Full Scale       | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0  | -9.960 |

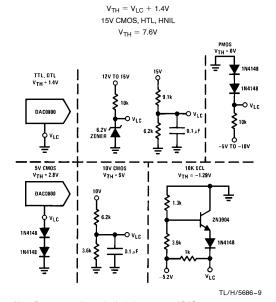

FIGURE 8. Symmetrical Offset Binary Operation (Note 4)

# Typical Applications (Continued)



For complementary output (operation as negative logic DAC), connect inverting input of op amp to  $\overline{l_0}$  (pin 2), connect  $l_0$  (pin 4) to ground.

FIGURE 9. Positive Low Impedance Output Operation (Note 4)




TL/H/5686-20

TL/H/5686-19

For complementary output (operation as a negative logic DAC) connect non-inverting input of op am to  $\overline{l_0}$  (pin 2); connect  $l_0$  (pin 4) to ground.

FIGURE 10. Negative Low Impedance Output Operation (Note 4)



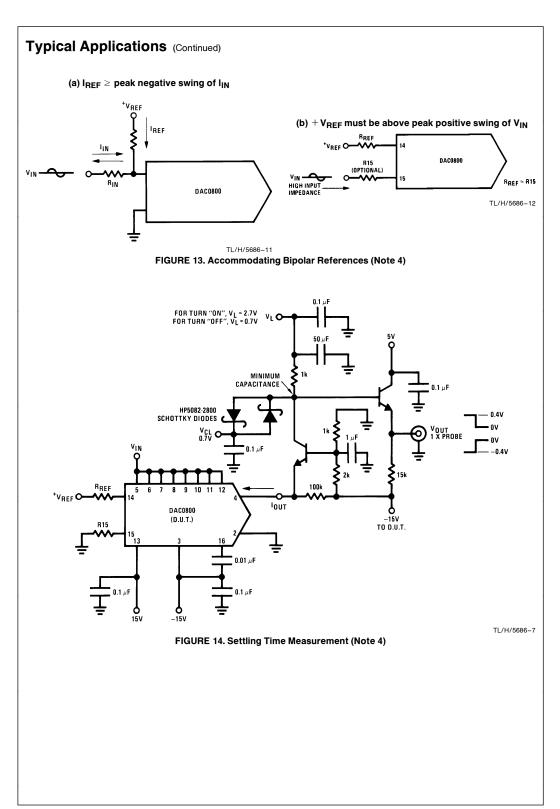
RREF OPTIONAL RESISTOR FOR OFFSET INPUTS

RIN

REG 200

14

DAC0800


TL/H/56866-10

Note. Do not exceed negative logic input range of DAC.

FIGURE 11. Interfacing with Various Logic Families

FIGURE 12. Pulsed Reference Operation (Note 4)

Typical values:  $R_{IN} = 5k$ ,  $+V_{IN} = 10V$ 



# Typical Applications (Continued)

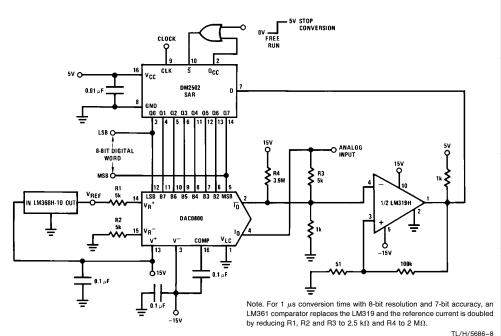
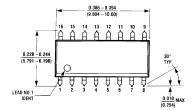
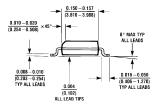
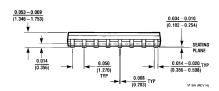


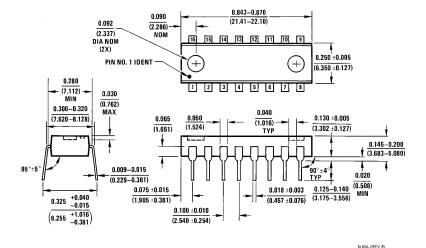


FIGURE 15. A Complete 2 μs Conversion Time, 8-Bit A/D Converter (Note 4)


# Physical Dimensions inches (millimeters)





Molded Dual-In-Line Package Order Numbers DAC0800 or DAC0802 NS Package Number J16A


#### Physical Dimensions inches (millimeters) (Continued)

Molded Small Outline Package (SO) Order Numbers DAC0800LCM, DAC0801LCM or DAC0802LCM NS Package Number M16A









Molded Dual-In-Line Package Order Numbers DAC0800, DAC0801, DAC0802 NS Package Number N16A

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.



National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

**National Semiconductor** Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80

National Semiconductor Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications