

C Series High Q Capacitors

Type:

C0603 [EIA CC0201]

Issue date:

April 2011

TDK MLCC US Catalog

Version B11

Downloaded from Datasheet.su

MULTILAYER CERAMIC CHIP CAPACITORS

REMINDERS

Please read before using this product

SAFETY REMINDERS

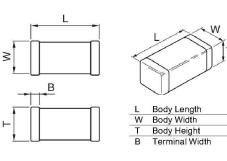
- 1. If you intend to use a product listed in this catalog for a purpose that may cause loss of life or other damage, you must contact our company's sales window.
- 2. We may modify products or discontinue production of a product listed in this catalog without prior notification.
- 3. We provide "Delivery Specification" that explain precautions for the specifications and safety of each product listed in this catalog. We strongly recommend that you exchange these delivery specifications with customers that use one of these products.
- 4. If you plan to export a product listed in this catalog, keep in mind that it may be a restricted item according to the "Foreign Exchange and Foreign Trade Control Law". In such cases, it is necessary to acquire export permission in harmony with this law.
- 5. Any reproduction or transferring of the contents of this catalog is prohibited without prior permission from our company.
- 6. We are not responsible for problems that occur related to the intellectual property rights or other rights of our company or a third party when you use a product listed in this catalog. We do not grant license of these rights.
- 7. This catalog only applies to products purchased through our company or one of our company's official agencies. This catalog does not apply to products that are purchased through other third parties.

MULTILAYER CERAMIC CHIP CAPACITORS

C Series High Q Capacitors

Applications

Available Through Distribution Only*


Features

- · Higher Q factor than standard capacitors
- · High stability with respect to time, temperature,
- frequency, and voltage
- Excellent attenuation
- High self-resonant frequency
- Lower power dissipation/less energy absorption
- Capacitance range of 0.2pF to 15pF
- · Available in standard and tight tolerance
- Please contact TDK for Q values

Shape & Dimensions

Dimensions in mm

Part Number Construction

		C 060	3 C0G 1E
Series Name		<u> </u>	
Dimensions L x	W (mm) —		
Case Code	Length	Width	
C0603	0.60 ± 0.03	0.30 ± 0.03	
Temperature Ch	aracteristic –		
Temperature	Capacitance	Temperature	
Characteristics	Change	Range	
C0G	0±30 ppm/°C	-55 to +125°C	
Rated Voltage (DC)		
Voltage Code	Voltage (DC)		
1E	25V		
Nominal Capaci	tance (pF) 🛛 🗕		

The capacitance is expressed in three digit codes and in units of pico Farads (pF). The first and second digits identify the first and second significant figures of the capacitance. The third digit identifies the multiplier. R designates a decimal point.

Capacitance Code	Capacitance
0R5	0.5pF
010	1pF
102	1,000pF (1nF)
105	1,000,000pF (1µF)

* This series is available through the distribution channel only. Please see www.tdk.com/distributor.php for a list of authorized distributors.

High-frequency applications

- PA modules
- · Cellular communication, Bluetooth
- Cable/satellite TV
- · GPS/satellite radio
- · Filter networks/matching networks
- · RF amplifiers/Low noise amplifiers
- · VCOs, TCXOs, etc.
- · DC blocking circuits

<u>150</u>	J	Internal Codes Packaging Style	
		Packaging Code	Style
		Ţ	Tape & Reel
		 Capacitance Tolera	ance Tolerance
		W	± 0.05 pF
		В	± 0.10 pF
		С	± 0.25 pF
		D	± 0.50 pF
		D E G	± 0.20 pF
		G	± 2%
		J	± 5%
o I			

S U

C0603 [EIA CC0201]

Capacitance Range Chart

Temperature Characteristics: C0G (0 ± 30ppm/°C) Rated Voltage: 25V(1E)

			Tolerance							
Capacitance (pF)	Cap Code	Temperature Characteristics	W (±0.05)	B (±0.10pF)	C (±0.25pF)	D (±0.50pF)	E (±0.20pF)	G (±2%)	J (±5%)	
0.2	0R2	-55 to 125ºC,								
0.3	0R3	0±30 ppm/ºC							-	
0.4	0R4									
0.5	0R5									
0.6	0R6									
0.7	0R7									
0.8	0R8									
0.9	0R9								-	
1	010									
1.1	1R1									
1.2	1R2									
1.3	1R3									
1.5	1R5									
1.6	1R6]								
1.8	1R8]								
2	020									
2.2	2R2]								
2.4	2R4									
2.7	2R7									
3	030									
3.3	3R3	- -								
3.6	3R6									
3.9	3R9									
4	040									
4.3	4R3									
4.7	4R7									
5	050	1								
5.1	5R1									
5.6	5R6									
6	060									
6.2	6R2	- 								
6.8	6R8	8								
7	070	1								
7.5	7R5	1								
8	080	1								
8.2	8R2	1	9 							
9	090	1								
9.1	9R1	1							2	
10	100	- -							×	
11	110									
12	120	- -								
13	130	1								
15	150	- -								
16	160		-							
18	180	3								
20	200	- *							and the	

0.30 mm

MULTILAYER CERAMIC CHIP CAPACITORS

Capacitance Range Table

C0603 [EIA CC0201]

Class 1 (Temperature Compensating)

Temperature Characteristics: COG (-55 to 125°C, 0±30 ppm/°C)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C0603C0G1E0R2WTQ	COG	25V	0.2	± 0.05pF	0.30 ± 0.03
C0603C0G1E0R2BTQ	COG	25V	0.2	± 0.10pF	0.30 ± 0.03
C0603C0G1E0R3WTQ	COG	25V	0.3	± 0.05pF	0.30 ± 0.03
C0603C0G1E0R3BTQ	COG	25V	0.3	± 0.10pF	0.30 ± 0.03
C0603C0G1E0R4WTQ	COG	25V	0.4	± 0.05pF	0.30 ± 0.03
C0603C0G1E0R4BTQ	COG	25V	0.4	± 0.10pF	0.30 ± 0.03
C0603C0G1E0R5WTQ	COG	25V	0.5	± 0.05pF	0.30 ± 0.03
0603C0G1E0R5BTQ	COG	25V	0.5	± 0.10pF	0.30 ± 0.03
0603C0G1E0R6WTQ	COG	25V	0.6	± 0.05pF	0.30 ± 0.03
C0603C0G1E0R6BTQ	COG	25V	0.6	± 0.10pF	0.30 ± 0.03
0603C0G1E0R7WTQ	COG	25V	0.7	± 0.05pF	0.30 ± 0.03
0603C0G1E0R8WTQ	COG	25V	0.7	± 0.05pF	0.30 ± 0.03
0603C0G1E0R7BTQ	COG	25V	0.7	± 0.10pF	0.30 ± 0.03
0603C0G1E0R8BTQ	COG	25V	0.8	± 0.10pF	0.30 ± 0.03
0603C0G1E0R9WTQ	COG	25V	0.9	± 0.05pF	0.30 ± 0.03
0603C0G1E0R9BTQ	COG	25V	0.9	± 0.10pF	0.30 ± 0.03
0603C0G1E010BTQ	COG	25V	1.0	± 0.10pF	0.30 ± 0.03
0603C0G1E010CTQ	COG	25V	1.0	± 0.25pF	0.30 ± 0.03
0603C0G1E1R1BTQ	C0G	25V	1,1	± 0.10pF	0.30 ± 0.03
0603C0G1E1R1CTQ	C0G	25V	1.1	± 0.25pF	0.30 ± 0.03
0603C0G1E1R2BTQ	COG	25V	1.2	± 0.10pF	0.30 ± 0.03
0603C0G1E1R2CTQ	COG	25V	1.2	± 0.25pF	0.30 ± 0.03
0603C0G1E1R3BTQ	COG	25V	1.3	± 0.10pF	0.30 ± 0.03
0603C0G1E1R3CTQ	COG	25V	1.3	± 0.25pF	0.30 ± 0.03
0603C0G1E1R5BTQ	C0G	25V	1.5	± 0.10pF	0.30 ± 0.03
0603C0G1E1R5CTQ	C0G	25V	1.5	± 0.25pF	0.30 ± 0.03
0603C0G1E1R6BTQ	C0G	25V	1.6	± 0.10pF	0.30 ± 0.03
0603C0G1E1R6CTQ	COG	25V	1.6	± 0.25pF	0.30 ± 0.03
0603C0G1E1R8BTQ	COG	25V	1.8	± 0.10pF	0.30 ± 0.03
0603C0G1E1R8CTQ	C0G	25V	1.8	± 0.25pF	0.30 ± 0.03
0603C0G1E020BTQ	COG	25V	2.0	± 0.10pF	0.30 ± 0.03
0603C0G1E020CTQ	COG	25V	2.0	± 0.25pF	0.30 ± 0.03
0603C0G1E2R2BTX	COG	25V	2.2	± 0.10pF	0.30 ± 0.03
0603C0G1E2R2CTX	COG	25V	2.2	± 0.25pF	0.30 ± 0.03
0603C0G1E2R4BTX	COG	25V	2.4	± 0.10pF	0.30 ± 0.03
0603C0G1E2R4CTX	COG	25V	2.4	± 0.25pF	0.30 ± 0.03
0603C0G1E2R7BTX	COG	25V	2.7	± 0.10pF	0.30 ± 0.03
0603C0G1E2R7CTX	COG	25V	2.7	± 0.25pF	0.30 ± 0.03
0603C0G1E030BTX	COG	25V	3.0	± 0.10pF	0.30 ± 0.03
0603C0G1E030CTX	COG	25V	3.0	± 0.25pF	0.30 ± 0.03
0603C0G1E3R3BTX	COG	25V	3.3	± 0.10pF	0.30 ± 0.03
0603C0G1E3R3CTX	COG	25V	3.3	± 0.25pF	0.30 ± 0.03
0603C0G1E3R6BTX	COG	25V	3.6	± 0.10pF	0.30 ± 0.03
0603C0G1E3R6CTX	COG	25V	3.6	± 0.25pF	0.30 ± 0.03

MULTILAYER CERAMIC CHIP CAPACITORS

Capacitance Range Table

C0603 [EIA CC0201]

Class 1 (Temperature Compensating)

Temperature Characteristics: COG (-55 to 125°C, 0±30 ppm/°C)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	⊺hickness (mm)
C0603C0G1E3R9BTX	COG	25V	3.9	± 0.10pF	0.30 ± 0.03
0603C0G1E3R9CTX	COG	25V	3.9	± 0.25pF	0.30 ± 0.03
0603C0G1E040BTX	COG	25V	4.0	± 0.10pF	0.30 ± 0.03
0603C0G1E040CTX	COG	25V	4.0	± 0.25pF	0.30 ± 0.03
0603C0G1E4R3BTX	COG	25V	4.3	± 0.10pF	0.30 ± 0.03
0603C0G1E4R3CTX	COG	25V	4.3	± 0.25pF	0.30 ± 0.03
0603C0G1E4R7BTX	COG	25V	4.7	± 0.10pF	0.30 ± 0.03
0603C0G1E4R7CTX	COG	25V	4.7	± 0.25pF	0.30 ± 0.03
0603C0G1E050BTX	COG	25V	5.0	± 0.10pF	0.30 ± 0.03
0603C0G1E050CTX	COG	25V	5.0	± 0.25pF	0.30 ± 0.03
0603C0G1E5R1BTX	COG	25V	5.1	± 0.10pF	0.30 ± 0.03
0603C0G1E5R1CTX	COG	25V	5.1	± 0.25pF	0.30 ± 0.03
0603C0G1E5R6BTX	COG	25V	5.6	± 0.10pF	0.30 ± 0.03
0603C0G1E5R6CTX	COG	25V	5.6	± 0.25pF	0.30 ± 0.03
0603C0G1E060BTX	COG	25V	6.0	± 0.10pF	0.30 ± 0.03
0603C0G1E060CTX	C0G	25V	6.0	± 0.25pF	0.30 ± 0.03
0603C0G1E6R2BTX	COG	25V	6.2	± 0.10pF	0.30 ± 0.03
0603C0G1E6R2CTX	COG	25V	6.2	± 0.25pF	0.30 ± 0.03
0603C0G1E6R8BTX	COG	25V	6.8	± 0.10pF	0.30 ± 0.03
0603C0G1E6R8CTX	COG	25V	6.8	± 0.25pF	0.30 ± 0.03
0603C0G1E070BTX	COG	25V	7.0	± 0.10pF	0.30 ± 0.03
0603C0G1E070CTX	COG	25V	7.0	± 0.25pF	0.30 ± 0.03
0603C0G1E7R5BTX	COG	25V	7.5	± 0.10pF	0.30 ± 0.03
0603C0G1E7R5CTX	COG	25V	7.5	± 0.25pF	0.30 ± 0.03
0603C0G1E080BTX	COG	25V	8.0	± 0.10pF	0.30 ± 0.03
0603C0G1E080CTX	COG	25V	8.0	± 0.25pF	0.30 ± 0.03
0603C0G1E8R2BTX	COG	25V	8.2	± 0.10pF	0.30 ± 0.03
0603C0G1E8R2CTX	COG	25V	8.2	± 0.25pF	0.30 ± 0.03
0603C0G1E090BTX	COG	25V	9.0	± 0.10pF	0.30 ± 0.03
0603C0G1E090CTX	COG	25V	9.0	± 0.25pF	0.30 ± 0.03
0603C0G1E9R1BTX	COG	25V	9.1	± 0.10pF	0.30 ± 0.03
0603C0G1E9R1CTX	COG	25V	9.1	± 0.25pF	0.30 ± 0.03
0603C0G1E100ETX	COG	25V	10	± 0.20pF	0.30 ± 0.03
0603C0G1E100DTX	COG	25V	10	± 0.50pF	0.30 ± 0.03
0603C0G1E110GTX	COG	25V	11	± 2%	0.30 ± 0.03
0603C0G1E110JTX	COG	25V	11	± 5%	0.30 ± 0.03
0603C0G1E120GTX	COG	25V	12	± 2%	0.30 ± 0.03
0603C0G1E120JTX	COG	25V	12	± 5%	0.30 ± 0.03
0603C0G1E130GTX	COG	25V	13	± 2%	0.30 ± 0.03
0603C0G1E130JTX	COG	25V	13	± 5%	0.30 ± 0.03
0603C0G1E150GTX	COG	25V	15	± 2%	0.30 ± 0.03
0603C0G1E150JTX	C0G	25V	15	± 5%	0.30 ± 0.03
0603C0G1E160GTX	COG	25V	16	± 2%	0.30 ± 0.03

MULTILAYER CERAMIC CHIP CAPACITORS

Capacitance Range Table

C0603 [EIA CC0201]

Class 1 (Temperature Compensating)

Temperature Characteristics: COG (-55 to 125°C, 0±30 ppm/°C)

TDK Part Number (Ordering Code)	Temperature Characteristics	Rated Voltage	Capacitance (pF)	Capacitance Tolerance	Thickness (mm)
C0603C0G1E180GTX	COG	25V	18	± 2%	0.30 ± 0.03
C0603C0G1E180JTX	COG	25V	18	± 5%	0.30 ± 0.03
C0603C0G1E200GTX	COG	25V	20	± 2%	0.30 ± 0.03
C0603C0G1E200JTX	C0G	25V	20	± 5%	0.30 ± 0.03

MULTILAYER CERAMIC CHIP CAPACITORS

General Specifications

C0603 Series – High Q Capacitors

No.	ltem	Performance			Test or Inspection Method			
1	External Appearance	No defects which ma performance.	ay affect	Inspect	with magnifying glas	s (10×).		
2	Insulation Resistance	10,000MΩ min.		Apply ra	ted voltage for 60s.			
3	Voltage Proof	Withstand test voltag insulation breakdowr		Class Class 1	Apply voltage $3 \times$ rated voltage	- - 		
					e current shall not e	upplied for 1 to 5s. Charge exceed 50mA.		
4	Capacitance	Within the specified t	olerance.	Class	Measuring Frequency	Measuring voltage		
			Class 1	1MHz±10%	0.5 - 5 V _{rms}			
5	Q (Class 1)	Rated CapacitanceQ $C \ge 30 pF$ 1,000 min. $C < 30 pF$ 400 + 20 × C min. $C : Rated capacitance (pF)$		See No.	4 in this table for me	asuring condition.		
6	Temperature Characteristics of Capacitance (Class 1)	C0G 0 ± 30 pp Capacitance drift	T.C.Temperature CoefficientC0G $0 \pm 30 \text{ ppm/°C}$ Capacitance driftWithin $\pm 0.2\%$ or $\pm 0.05 \text{pF}$, whichever		Temperature coefficient shall be calculated based on values at 25°C and 85°C temperature. Measuring temperature below 20°C shall be -10°C and -25°C.			
7	Robustness of Terminations	No sign of terminatio breakage of ceramic, signs.			on P.C. board (shown in shing force of 2N for Pushing force <u>Pushing force</u> <u>P.C. board</u>			
8	Bending	No mechanical dama		x 2) and bend it for ²⁰	on P.C. board (shown in 1mm. f F R230 45 1 45 Unit: mm			

<mark>⊗TD</mark>K

MULTILAYER CERAMIC CHIP CAPACITORS

General Specifications

C0603 Series – High Q Capacitors

No.	ltem	Performance			Test or Inspection Method			
9	Solderability	New solder to c termination.	over o	over 75% of	Completely soak both terminations in solder at $235\pm5^{\circ}$ C for 2 ± 0.5 s.			
		25% may have	pinho	les or rough spots	Solder: H63A (JIS Z 3282)			
		but not concent Ceramic surface	rated e of A e to m		Flux: Isopropyl alcohol (JIS K 8839) Rosin (JIS K 5902) 25% solid solution.			
			\checkmark_{A}	section				
10	Resistance to se	older heat			Completely soak both terminations in solder at			
	External	No cracks are a	llowe	d and terminations	$260 \pm 5^{\circ}$ C for 5 ± 1 s.			
	appearance	shall be covered	d at le	ast 60% with new	Preheating condition			
	9 <u></u>	solder.			Temp.: 150±10℃			
	Capacitance	pacitance Characteristics Cha			Time : 1 to 2min.			
			val	lue before test	Flux: Isopropyl alcohol (JIS K 8839)			
		Class 1 C0G		pacitance drift within 2.5% or \pm 0.25pF,	Rosin (JIS K 5902) 25% solid solution.			
				ichever larger.	Solder: H63A (JIS Z 3282)			
	Q (Class 1)	Rated Capacita	ince	Q	Leave the capacitor in ambient conditions for 6 to 24h before measurement.			
		C ≥ 30pF	CONTRACTOR STATE	1,000 min.				
		C < 30pF		400 + 20×C min.				
			C : Ra	ated capacitance (pF)				
	Insulation Resistance	Meet the initial s	spec.		_			
	Voltage Proof	No insulation br damage.	eakdo	own or other	-			
11	Vibration				Reflow solder the capacitor on P.C. board (shown in			
	External appearance	No mechanical	No mechanical damage.		Appendix 1) before testing. Vibrate the capacitor with amplitude of 1.5mm P-P			
	Characteristicsvalue beClass 1COGCapacita±2.5% c			ange from the lue before test	 sweeping the frequencies from 10Hz to 55Hz and back to 10Hz after 1min. 			
			pacitance drift within 2.5% or \pm 0.25pF, ichever larger.	Repeat this for 2h each in 3 perpendicular directions.				
	Q (Class 1)	Rated Capacita	ince	Q	-			
	~	C ≥ 30pF		1,000 min.				
		C < 30pF		400+20×C min.				
			C . D-	ated capacitance (pF)				

会TDK

MULTILAYER CERAMIC CHIP CAPACITORS

General Specifications

C0603 Series – High Q Capacitors

No.	ltem	Performa	ance			Test or Inspection Method				
12	Temperature cyc External appearance	le No mecha	anical dar	mag	je.	Reflow solder the capacitors on a P.C. board (shown in Appendix 1) before testing. Expose the capacitor in the conditions in step 1 through step 4, and repeat 5 times consecutively.				
	Capacitance		Characteristics value va		ange from the ue before test pacitance drift within	Leave t	ne capacitor in ambient con neasurement.			
					.5% or \pm 0.25pF, chever larger.	Step	Temperature (°C)	Time (min.)		
	97			WINC		1	Min. operating temp. ± 3	30 ± 3		
	Q (Class 1)	Rated Ca	pacitance	е	Q	2	Reference Temp.	2 – 5		
		C ≥ 30pF			1,000 min.	3	Max. operating temp. \pm 2	30 ± 2		
		C < 30pF			400 + 20×C min.	4	Reference Temp.	2 - 5		
			C :	Rat	ed capacitance (pF)	20 20	A statistic total polytom, and a statistic polytom.			
	Insulation Resistance Voltage Proof	Meet the in No insulat damage.			wn or other					
13	Moisture Resista	nce (Steady	State)			Reflow solder the capacitor on P.C. board (shown in				
	External appearance	No mecha	anical dar	mag	je.	Appendix 1) before testing. Leave at temperature 40±2°C, 90 to 95%RH for 500 +24,0h. Leave the capacitor in ambient condition for 6 to 24h				
	Capacitance	Characte	ristics		ange from the ue before test					
		Class 1		$\pm 5^{\circ}$	pacitance drift within % or \pm 0.5pF, chever larger.	before r	neasurement.			
	Q (Class 1)	Rated Ca	pacitance	e	Q	-				
		C ≥ 30pF			350 min.					
		10pF ≤ C	< 30pF		275 + 5/2×C min.					
		C < 10pF 200 + 10×C								
			C : Rated capacitance (pF)							
	Insulation	1,000MΩ ι	min.			~				
	Resistance									

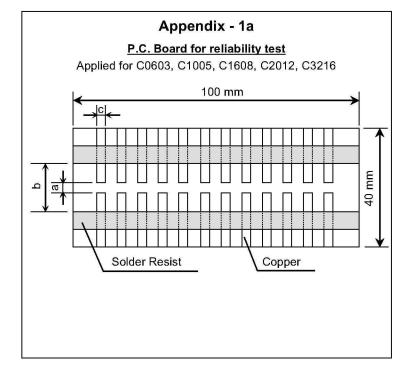
会TDK

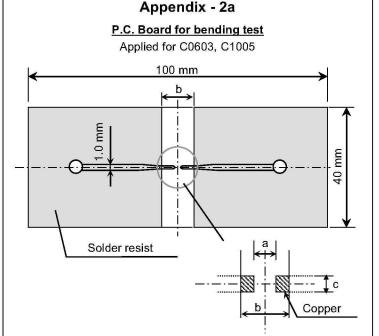
MULTILAYER CERAMIC CHIP CAPACITORS

General Specifications

C0603 Series – High Q Capacitors

No.	ltem	Perform	ance			Test or Inspection Method
14	Moisture Resist	ance				Reflow solder the capacitors on P.C. board (shown in
	External	No mech	anical da	ama	ge.	Appendix 1) before testing.
	appearance					Apply the rated voltage at temperature $40\pm2^{\circ}$ C and 90 to 95%RH for 500 +24.0h.
	Capacitance	Characte	eristics		ange from the lue before test	Charge/discharge current shall not exceed 50mA.
		Class 1	C0G	± 7	pacitance drift within 7.5% or \pm 0.75pF, ichever larger.	Leave the capacitor in ambient conditions for 6 to 24h before measurement.
	Q (Class 1)	Dated C			0	Use this measurement for initial value.
		Rated C C ≥ 30pF		ce	Q 200 min.	
		C < 30pF			$100 + 10/3 \times C$ min.	
				: Ra	ted capacitance (pF)	
	Insulation Resistance	500MΩ n	nin.			
15	Life	Life				Reflow solder the capacitor on P.C. board (shown in
	External appearance	No mech	anical da	ama	ge.	Appendix 1) before testing. Apply 2x rated voltage at 125±2°C for 1,000 +48, 0h.
	Capacitance	Characte	eristics		ange from the	Charge/discharge current shall not exceed 50mA.
		Class 1	C0G	Са	pacitance drift within 3% or $\pm 0.3pF$,	Leave the capacitors in ambient condition for 6 to 24h before measurement.
					ichever larger.	Use this measurement for initial value.
	Q (Class 1)	Rated Ca	apacitan	се	Q	-
	C ≥ 30pF		350 min.			
		10pF ≤ C	10pF ≤ C < 30pF		275 + 5/2×C min.	
		C < 10pF		200 + 10×C min.		
	1		C	:Ra	ited capacitance (pF)	_
	Insulation 1,000MΩ min. Resistance					


General


Specifications

MULTILAYER CERAMIC CHIP CAPACITORS

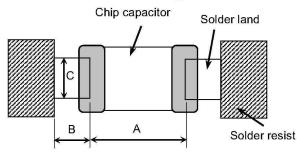
C0603 Series – High Q Capacitors

Material : Glass Epoxy (As per JIS C6484 GE4)

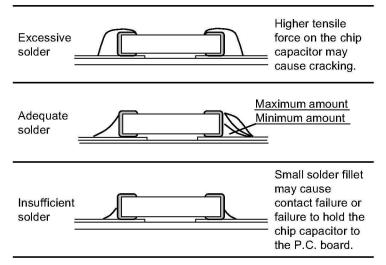
P.C. Board thickness : Ap	bendix - 2 0.8mm
---------------------------	------------------

Appendix - 1 1.6mm

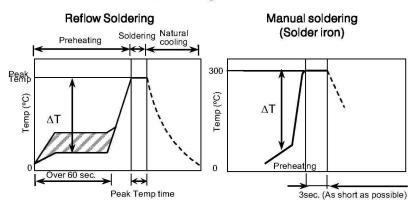
Copper (thickness 0.035mm) Solder resist


Case Code		Di	mensions (m	m)
JIS	EIA	а	b	C
20603	CC0201	0.3	0.8	0.3

MULTILAYER CERAMIC CHIP CAPACITORS


C0603 Series – High Q Capacitors

Recommended Soldering Land Pattern



Reflow Soldering	Unit: mm	
Туре	C0603	
Symbol	[CC0201]	
A	0.25 ~ 0.35	
В	0.2 ~ 0.3	
С	0.25 ~ 0.35	

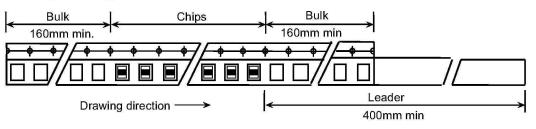
Recommended Solder Amount

Recommended Soldering Profile

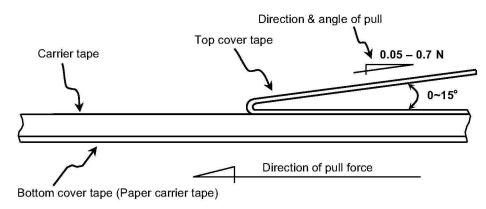
Recommended soldering duration

Temp./	Reflow S	oldering
Dura. Solder	Peak temp (°C)	Duration (sec.)
Sn-Pb Solder	230 max.	20 max.
Lead-Free Solder	260 max.	10 max.

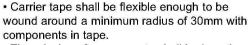
Recommended solder compositions Sn-37Pb (Sn-Pb solder) Sn-3.0Ag-0.5Cu (Lead Free Solder)

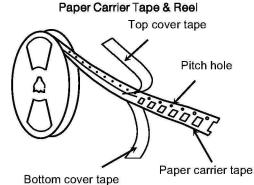

Preheating Condition

Soldering	Temp. (°C)
Reflow soldering	∆T ≤ 150
Manual soldering	∆T ≤ 150



C0603 Series – High Q Capacitors

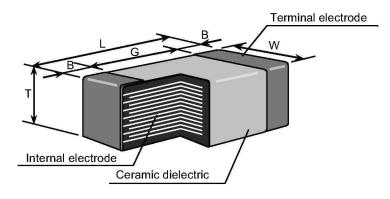

Carrier Tape Configuration


• Peel Back Force (Top Tape)

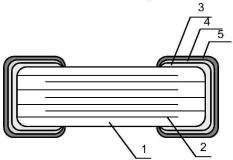
Chip Quantity Per Reel and Structure of Reel

- \bullet The missing of components shall be less than 0.1%
- Components shall not stick to the cover tape.
 The cover tape shall not protrude beyond the
- The cover tape shall not protrude beyond the edges of the carrier tape and shall not cover the sprocket holes.

(Bottom cover tape is not always applied)


Case	Code	Chip	Toping	Chip quantity (pcs.)
JIS	EIA	Thickness (mm)	Taping Material	φ178mm (7") reel
C0603	CC0201	0.30	Paper	15,000

MULTILAYER CERAMIC CHIP CAPACITORS


C0603 Series – High Q Capacitors

Shape & Dimensions

Case	e Code		Dim	nensions	(mm)	
JIS	EIA	L	W	Т	В	G
C0603	CC0201	0.60	0.30	0.30	0.15	0.20 min.

Inside Structure & Material System

No.	NAME	MATERIAL	
		Class 1	
(1)	Ceramic Dielectric	CaZrO ₃	
(2)	Internal Electrode	Nickel (Ni)	
(3)		Copper (Cu)	
(4)	Termination	Nickel (Ni)	
(5)		Tin (Sn)	

Environmental Information

TDK Corporation established internal product environmental assurance standards that include the six hazardous substances banned by the EU RoHS Directive¹ enforced on July 1, 2006 along with additional substances independently banned by TDK and has successfully completed making general purpose electronic components conform to the RoHS Directive².

- Abbreviation for Restriction on Hazardous Substances, which refers to the regulation EU Directive 2002/95/EC on hazardous substances by the European Union (EU) effective from July 1, 2006. The Directive bans the use of six specific hazardous substances in electric and electronic devices and products handled within the EU. The six substances are lead, mercury, cadmium, hexavalent chromium, PBB (polybrominated biphenyls), and PBDE (polybrominated diphenyl ethers).
- 2. This means that, in conformity with the EU Directive 2002/95/EC, lead, cadmium, mercury, hexavalent chromium, and specific bromine-based flame retardants, PBB and PBDE, have not been used, except for exempted applications.
- For REACH (SVHC : 15 substances according to ECHA / October 2008) : All TDK MLCC do not contain these 15 substances.
- For European Directive 2000/53/CE and 2005/673/CE : Cadmium, Hexavalent Chromium, Mercury, Lead are not contained in all TDK MLCC.
- For European Directive 2003/11/CE : Pentabromodiphenylether, Octabromodiphenyl-ether are not contained in all TDK MLCC.