BCP53T1 Series

Preferred Devices

PNP Silicon Epitaxial Transistors

This PNP Silicon Epitaxial transistor is designed for use in audio amplifier applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

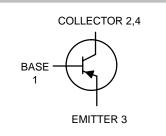
- High Current: 1.5 Amps
- NPN Complement is BCP56
- The SOT-223 Package can be soldered using wave or reflow. The formed leads absorb thermal stress during soldering, eliminating the possibility of damage to the die
- Available in 12 mm Tape and Reel Use BCP53T1 to order the 7 inch/1000 unit reel. Use BCP53T3 to order the 13 inch/4000 unit reel.
- Device Marking: BCP53T1 = AH BCP53-10T1 = AH-10 BCP53-16T1 = AH-16
- Pb–Free Package May be Available. The G–Suffix Denotes a Pb–Free Lead Finish

MAXIMUM RATINGS (T_C = 25° C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	-80	Vdc
Collector-Base Voltage	VCBO	-100	Vdc
Emitter-Base Voltage	V _{EBO}	-5.0	Vdc
Collector Current	IC	1.5	Adc
Total Power Dissipation @ T _A = 25°C (Note 1.) Derate above 25°C	PD	1.5 12	Watts mW/°C
Operating and Storage Temperature Range	TJ, Tstg	–65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient (surface mounted)	R _{θJA}	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	ΤL	260 10	°C Sec


1. Device mounted on a glass epoxy printed circuit board 1.575 in. x 1.575 in. x 0.059 in.; mounting pad for the collector lead min. 0.93 sq. in.

ON Semiconductor®

http://onsemi.com

MEDIUM POWER HIGH CURRENT SURFACE MOUNT PNP TRANSISTORS

MARKING DIAGRAM

SOT-223 CASE 318E STYLE 1

 $\begin{array}{ll} \mathsf{AHxxx} &= \mathsf{Device} \; \mathsf{Code} \\ \mathsf{xxx} &= -10 \; \mathsf{or} \; -16 \end{array}$

ORDERING INFORMATION

Device	Package	Shipping [†]
BCP53T1	SOT-223	1000/Tape & Reel
BCP53T1G	SOT-223 (Pb-Free)	1000/Tape & Reel
BCP53-10T1	SOT-223	1000/Tape & Reel
BCP53-16T1	SOT-223	1000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

BCP53T1 Series

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Symbol	Min	Тур	Max	Unit
V(BR)CBO	-100	-	-	Vdc
V(BR)CEO	-80	-	-	Vdc
V(BR)CER	-100	-	-	Vdc
V(BR)EBO	-5.0	-	-	Vdc
ICBO	-	-	-100	nAdc
IEBO	-	-	-10	μAdc
	V(BR)CBO V(BR)CEO V(BR)CER V(BR)EBO ICBO	V(BR)CBO -100 V(BR)CEO -80 V(BR)CER -100 V(BR)EBO -5.0 ICBO -	V(BR)CBO -100 - V(BR)CEO -80 - V(BR)CER -100 - V(BR)EBO -5.0 - ICBO - -	V(BR)CBO -100 - - V(BR)CEO -80 - - V(BR)CER -100 - - V(BR)EBO -5.0 - - ICBO - - -

ON CHARACTERISTICS

DC Current Gain ($I_C = -5.0$ mAdc, $V_{CE} = -2.0$ Vdc) All Part Types ($I_C = -150$ mAdc, $V_{CE} = -2.0$ Vdc) BCP53T1 BCP53-10T1 BCP53-10T1 ($I_C = -500$ mAdc, $V_{CE} = -2.0$ Vdc) All Part Types	hFE	25 40 63 100 25	- - - -	- 250 160 250 -	_
Collector-Emitter Saturation Voltage ($I_C = -500$ mAdc, $I_B = -50$ mAdc)	VCE(sat)	_	_	-0.5	Vdc
Base-Emitter On Voltage (I _C = -500 mAdc, V _{CE} = -2.0 Vdc)	V _{BE(on)}	-	-	-1.0	Vdc
DYNAMIC CHARACTERISTICS					

DYNAMIC CHARACTERISTICS

Current-Gain – Bandwidth Product ($I_C = -10 \text{ mAdc}, V_{CE} = -5.0 \text{ Vdc}, f = 35 \text{ MHz}$)	fT	-	50	-	MHz

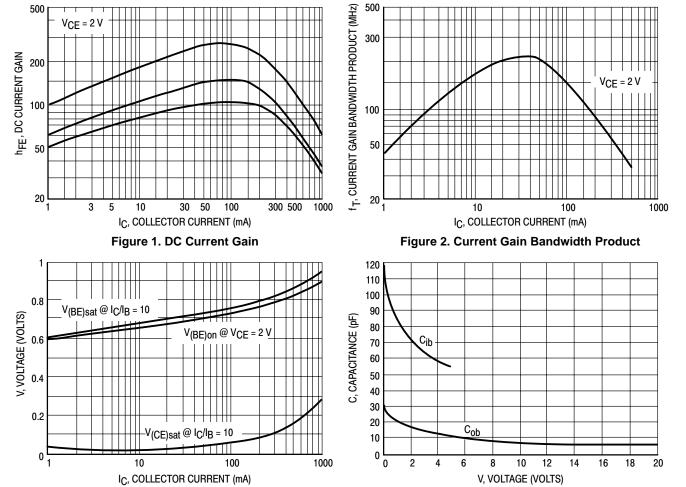
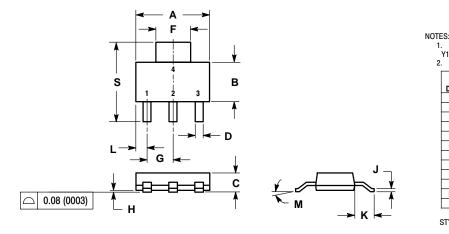



Figure 3. Saturation and "ON" Voltages

PACKAGE DIMENSIONS

SOT-223 CASE 318E-04 ISSUE K

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.249	0.263	6.30	6.70
В	0.130	0.145	3.30	3.70
С	0.060	0.068	1.50	1.75
D	0.024	0.035	0.60	0.89
F	0.115	0.126	2.90	3.20
G	0.087	0.094	2.20	2.40
н	0.0008	0.0040	0.020	0.100
J	0.009	0.014	0.24	0.35
Κ	0.060	0.078	1.50	2.00

0.85

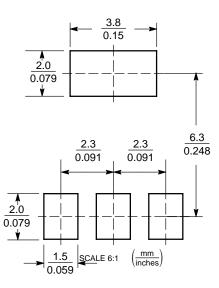
0 ° 10 °

6.70

1.05

7.30

DIMENSIONING AND TOLERANCING PER ANSI



 M
 0 °
 10 °

 S
 0.264
 0.287
STYLE 1: PIN 1. BASE 2. COLLECTOR 3. EMITTER 4. COLLECTOR

L 0.033 0.041

1.

SOLDERING FOOTPRINT*

Figure 5. SOT-223

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

BCP53T1 Series

SENSEFET is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death agsociated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.