ANALOG DEVICES INC

Dual Bipolar/JFET, Precision Operational Amplifier

T-79-15 OP-285*

> 6 -IN B

+IN B 5

3 +IN A

OP-285

v...

2

The OP-285 is a precision high speed amplifier featuring the Butler Amplifier front-end. This new front-end design combines the accuracy and low noise performance of bipolar transistors with the speed of JFETs. This yields an amplifier with high slew rates, low offset and good noise performance at low supply currents. Bias currents are also low compared to bipolar designs.

The OP-285 is specified over the extended industrial (-40°C to +85°C) temperature range. OP-285s are available in plastic DIP plus SO-8 surface mount packages.

*Patents pending.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

REV.0

51E D 📟 0816800 0036806 920 📟 ANA

T-79-15

OP-285—SPECIFICATIONS ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS	1 . ~		-			
Offset Voltage	Vos			125	250	μV
Input Bias Current	IB	$V_{CM} = 0 V$		150		nA
Input Offset Current	Ins	$V_{CM} = 0 V$		2		nA
Input Voltage Range	V _{CM}		-10.5		+10.5	v
Common-Mode Rejection	CMR	$V_{CM} = \pm 10.5 V$	86			dB
Large Signal Voltage Gain	Avo	$R_L = 600 \Omega$		200		V/mV
Offset Voltage Drift	$\Delta V_{\rm os}/\Delta T$	-		5		μV/℃
OUTPUT CHARACTERISTICS						
Output Voltage Swing	V _o	$R_L = 10 k\Omega$	-13	±14.1	+13	V
Open Loop Output Resistance	R _{OUT}					<u>Ω</u>
POWER SUPPLY			NY *			
Power Supply Rejection Ratio	PSRR	$V_{\rm s} = \pm 4.5 \rm V$ to ± 15		80	_	dB
Supply Current	I _{SY}	$V_{O} = 0 V$		4	5	mA
Supply Voltage Range	Vs		<u>A Normaliana (Normaliana (Nor</u>	<u> </u>	±18	V
DYNAMIC PERFORMANCE		AFV. AN		20		\$7/
Slew Rate	SR 🔿	$\mathbf{F} = 2 \mathbf{k} \mathbf{r} = \mathbf{k} \mathbf{r}$		20		V/µs
Full-Power Bandwidth	BWp 🍸					kHz
Settling Time	ts	KCY A		•		μs MHz
Gain Bandwidth Product	GBP	N. OK		8		MHZ %
Total Harmonic Distortion	THD	@ 20 kHz		0.002		
		@ 1 kHz		0.0006		%
Phase Margin	θο			62		Degrees
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		1.1		$\mu V p - p$
Voltage Noise Density	en	f = 1 kHz		6		nV/\sqrt{Hz}
Current Noise Density	i n	f = 1 kHz		1.5		pA/√Hz

Specifications subject to change without notice.

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

Downloaded from

T-79-15

OP-285

WAFER TEST LIMITS @ $V_s = \pm 15.0 \text{ V}$, $T_A = +25^{\circ}\text{C}$ unless otherwise specified.)

Parameter	Symbol	Conditions	Limit	Units
Offset Voltage	Vos		250	mV max
Input Bias Current	I _B	$V_{CM} = 0 V$	200	nA max
Input Offset Current	I	$V_{CM} = 0 V$	50	nA max
Input Voltage Range ¹			±10.5	V min
Common-Mode Rejection	CMRR	$V_{CM} = \pm 10.5 V$	86	dB min
Power Supply Rejection Ratio	PSRR	$V = \pm 4.5 V \text{ to } \pm 15 V$	80	dB min
Large Signal Voltage Gain	A _{vo}	$R_{I} = 10 k\Omega$	100	V/mV min
Output Voltage Range	V _o	$\mathbf{R}_{\mathrm{L}} = 10 \mathrm{k}\Omega$	±13	V min
Supply Current	I _{SY}	$V_0 = 0 V, R_L = \infty$	5	mA max

NOTE

Electrical tests and wafer probe to the limits shown. Due to variations in assembly with deconormal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on displet quaranteed by through the sample lot assembly and testing. ¹Guaranteed by CMR test.

ABSOLUTE MAXIMUM RATINGS¹

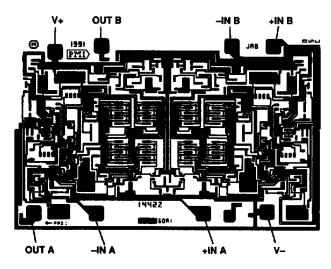
Supply Voltage
Input Voltage ²
Differential Input Voltage ²
Output Short-Circuit Duration Limited
Storage Temperature Range
P, S Package
Operating Temperature Range
OP-285E, F40°C to +85°C
Junction Temperature Range
P, S Package
Lead Temperature Range (Soldering, 60 Sec) +300°C

Package Type	θ _{JA} ³	θյς	Units
8-Pin Plastic DIP (P)	103	43	°C/W
8-Pin SOIC (S)	158	43	°C/W

NOTES

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

²For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.


 ${}^{3}\theta_{JA}$ is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for cerdip, P-DIP, and LCC packages; θ_{JA} is specified for device soldered in circuit board for SOIC package.

ORDERING GUIDE

Model	Temperature Range	Package Option*	
OP285EP	-40°C to +85°C	8-Pin Plastic DIP	
OP285ES	-40°C to +85°C	8-Pin SOIC	
OP285FP	-40°C to +85°C	8-Pin Plastic DIP	
OP285FS	-40°C to +85°C	8-Pin SOIC	
OP285GBC	+25°C	DICE	

*For outline information see Package Information section.

DICE CHARACTERISTICS

OP-285 Die Size 0.070 in. × 0.108 in. (7,560 sg. mils)

This information applies to a product under development. Its characteristics and specifications are subject to change without notice. Analog Devices assumes no obligation regarding future manufacture unless otherwise agreed to in writing.

ded from