

Complete 12-Bit Sampling A/D Converter for Digital Signal Processing

AD1332

FEATURES

Complete A/D System for DSP Includes:
4th Order Antialiasing Filter
12-Bit Sampling A/D Converter
32-Word FIFO Memory
Fully Asynchronous, High Speed Digital Interface
Sample Rate up to 125 kHz
Entire System Is Dynamically Specified
15 ns Data Access Time Allows "No Wait State"
Interface to: ADSP-2100 (A), TMS320C25
DSP56000, NECµPD77230

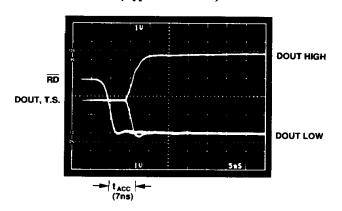
APPLICATIONS
Sonar Signal Processing
Vibration Analysis
Ultrasound Imaging
PC Data Acquisition
High Speed Modems
Motion Control

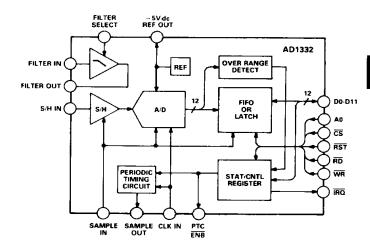
Speech Processing

PRODUCT DESCRIPTION

The AD1332 is a complete, 12-bit A/D converter system optimized for use in high speed digital signal processing (DSP) applications. The device consists of a fourth order antialiasing filter, a 12-bit sampling A/D, a fully asynchronous high speed digital interface and a 32-word FIFO memory. The AD1332 is manufactured using highly reliable advanced hybrid circuit assembly techniques and is packaged in a 40-pin hermetic DIP.

The antialiasing filter is an active four-pole Butterworth. Cutoff frequencies (f_C) are user-selectable (capacitor programmable), and operation is specified for f_C up to 50 kHz. The filter may be bypassed entirely if desired.


The 12-bit sampling A/D converter can convert ±5 V full-scale signals at sample rates up to 125 kHz. The rate is programmable by means of a single external clock. The entire converter system is specified and tested for signal-to-noise ratio and total harmonic distortion.


The digital interface provides a true asynchronous link between the A/D and a high speed microprocessor. Data transfer is controlled by generating an interrupt signal when data is available. Interrupts can be generated when the FIFO is full (32 words), half-full (16 words), or when a single word of data is ready (FIFO bypassed). In addition, the AD1332 can generate an interrupt signal when the A/D conversion results are overrange.

The AD1332 provides a completely specified and tested system that bridges the interface and specification gap between A/D converters and high speed DSP.

This is an abridged version of the data sheet. To obtain a complete data sheet, contact your nearest sales office.

DATA ACCESS TIME (Typical at +25°C)

AD1332 Block Diagram

REV. A

AD1332 — SPECIFICATIONS ($T_A = +25^{\circ}C$, $V_S = \pm 15$ V, $V_{DD} = +5$ V, unless otherwise noted)

	l A	D1332BD			AD1332TD) .	
	Min	Тур	Max	Min	Тур	Max	Units
FILTER (C1–C4 = 500 pF \pm 1%)							
Input Impedance	8	10		8.	10		kΩ
Voltage Range	±10			±10			V
Output Voltage Range R _L ≥4 k	±10			±10			V
Corner Frequency, Accuracy		±2			±2		%
Drift	1	±0.01		ļ	±0.01		%/°C
Gain ¹ @ dc	-0.05	_5.52	+0.05	-0.05		+0.05	dB
0.8 f _C	-1		+1	-1		+1	dB
	1	-3	• •	-	-3	· -	dB
f _c		-48	-45		- 48	-45	dB
4 f _C		-76	45		-76	43	dB
10 f _C		100	125		100	125	1
Settling Time to 0.01%, 10 V Step						±5	μs mV
Offset		±2	±5		±2		
Drift		±20	± 100		±20	±100	μV/°C
Noise		75			75		μV rms
SAMPLING A/D CONVERTER ²		_			_		1.0
Input Impedance	4	5		4	5	_	kΩ
Voltage Range	ļ	-5 to $+3$		1	-5 to +		V
Output Coding	1	Offset Bin	ary		Offset Bir	-	
CLK IN Frequency	0.5		2.5	0.5		2.5	MHz
High Time	200			200			ns
Low Time	200			200			ns
Sampling Rate (f _S)			125			125	kHz
S/H							İ
Acquisition Time	1		2.8			2.8	μs
Droop Rate		0.25	0.5		0.25	0.5	mV/ms
	De	oubles Ever		۵ ا	oubles Eve		
Over Temperature		15	, 100	-	15	., 100	ns
Aperture Delay Time	ŀ	15		1	13		143
Static Characteristics		- 1/2	41		±1/2	±1	LSB
Integral Nonlinearity		± 1/2	±1		± 1/2	±1	LSB
Over Temperature			±1	1		±1	i
Resolution for No Missing Codes	12			12			Bits
Over Temperature	12		_	12	_	_	Bits
-Full-Scale Error		±1	±2		±1	±2	LSB
Over Temperature		±2	±8		±2	±13	LSB
+Full-Scale Error		±1	±2		±1	±2	LSB
Over Temperature		±2	±8		±2	±13	LSB
$PSRR, \pm V_{S}$		$\pm 1/2$			$\pm 1/2$		LSB/V
Dynamic Characteristics ^{1, 3}							
With Filter ($f_C = 50 \text{ kHz}$)							
Signal-to-Noise Ratio, $f_{iN} = 38.7 \text{ kHz}$	70	72		70	72		dB
Total Harmonic Distortion, $f_{IN} = 38.7 \text{ kHz}$	'	-82	-72	1	-82	-72	dB
Intermodulation Distortion, $f_{IN1} = 32.8 \text{ kHz}$	İ	••		İ			
$& f_{IN2} = 34.3 \text{ kHz}$		-82	-72		-82	-72	dB
Without Filter		QL.	7 4		32	, -	
	70	72		70	72		dB
Signal-to-Noise Ratio, $f_{IN} = 60.9 \text{ kHz}$	70	72 70	. 60	' ⁰	-78	-68	dB
Total Harmonic Distortion, $f_{IN} = 60.9 \text{ kHz}$		-78	-68		-/5	-08	""
Intermodulation Distortion, $f_{IN1} = 58.7 \text{ kHz}$					70	70	- ar
& $f_{IN2} = 60.9 \text{ kHz}$		-78	-68		-78	-68	dB
Reference Voltage	-5.05		-4.95	-5.05		-4.95	V.
Output Current	±1	±2		±1	±2		mA
		±10	±30		±10	±30	ppm/°C

		AD1332BI)	AD1332TD			
	Min	Typ	Max	Min	Тур	Max	Units
DIGITAL INPUTS ¹							
\overline{RD} , \overline{WR} , \overline{CS} , \overline{RST} , A0,							
D0-D11, PTC ENB							
Input Voltage, Logic Low			+0.8			+0.8	v
Input Voltage, Logic High	+2.0			+2.25			v
Input Current			±200			±200	μA
SAMPLE IN, CLK IN				1			'
Input Voltage, Logic Low			+1.5			+1.5	v
Input Voltage, Logic High	+3.5			+3.5			v
Input Current			±10	1		±10	μA
Input Capacitance		5			5		pF
RST LOW Pulse Width	10			10			ns
DIGITAL OUTPUTS ¹			***		· • • · · · · · · · · · · · · · · · · ·		
D0-D11, SAMPLE OUT				Į.			i
Output Voltage, Logic Low ⁵			+0.4	ļ		+0.4	l v
Output Voltage, Logic High							'
D0-D11 ⁵	+2.4			+2.4			v
SAMPLE OUT, $I_{OH} = -0.4 \text{ mA}$	+4.0			+4.0			V
High Impedance Leakage Current			±200			±200	μA
IRQ, PTC ENB							'
Output Voltage, Logic Low ⁵			+0.4			+0.4	v
Off-State Leakage			±10			±10	μA
Output Capacitance		5			5		pF
IRQ LOW to D0-D11 Valid4			0			0	ns
POWER REQUIREMENTS							
Operating Range							
$\pm V_{S}$	±11.4		±15.75	±11.4		±15.75	v
V_{DD}	+4.75		+5.25	+4.75		+5.25	v
+V _S Supply Current		50	57		50	57	mA
-V _S Supply Current		48	57		48	57	mA
+V _{DD} Supply Current	ŀ	6	15		6	15	mA.
Consumption							
$\pm V_S = \pm 12 \text{ V}$		1.2	1.4		1.2	1.4	w
$\pm V_{S} = \pm 15 \text{ V}$		1.5	1.75		1.5	1.75	w
TEMPERATURE RANGE					***************************************	· · · · · · · · · · · · · · · · · · ·	
Operating and Specified	-40		+85	-55		+125	°C
Storage	-65		+150	65		+150	°C

NOTES

ORDERING GUIDE

Model	Temperature Range	Package Option*
AD1332BD	-40°C to +85°C	DH-40A
AD1332TD/883B	-55°C to +125°C	DH-40A

^{*}D = Hermetic Ceramic DIP. For outline information see Package Information section.

NOTES

Guaranteed over operating temperature range, tested at $+25^{\circ}\text{C}$ only. $^2I_{\text{CLK}} = 2.5 \text{ MHz}$, SAMPLE IN connected to SAMPLE OUT, PTC $\overline{\text{ENB}} = \text{Low}$. ^3THD of harmonics 2-7 of the fundamental. SNR of fundamental less harmonics 2-7. $^4\overline{\text{RD}}$, $\overline{\text{CS}}$, A0 = "Low;" $\overline{\text{WR}}$, $\overline{\text{RST}} =$ "High." $^5I_{\text{OL}} = 4 \text{ mA}$, $I_{\text{OH}} = -4 \text{ mA}$ for AD1332BD. $I_{\text{OL}} = 3.2 \text{ mA}$, $I_{\text{OH}} = -3.2 \text{ mA}$ for AD1332TD.

Specifications subject to change without notice.

AD1332

SWITCHING CHARACTERISTICS

(over operating temperature and power supply voltage range, with $C_{\text{out}}=30~\text{pF}$ or 100 pF except where noted)

Parameter	Description	Conditions	Min	Max	Units
READ CYCLE					
t _{RC}	Read Cycle Time	$C_{OUT} = 30 \text{ pF}$	25		ns
		$C_{OUT} = 100 pF$	35		ns
t _A	Data Access Time	$C_{OUT} = 30 pF$		15	ns
- A		$C_{OUT} = 100 pF$		25	ns
		$C_{OUT} = 150 pF$	1	35	ns
t _{LZ}	Output Low Z Time		2		ns
	Output High Z Time	$C_{OUT} = 30 pF$		15	ns
t _{HZ}		$C_{OUT} = 100 \text{ pF}$		25	ns
t _{OH}	Output Hold Time		2		ns
	A0 Valid to RD LOW		2 3		ns
t _{A0RD}	RD HIGH to A0 Invalid	i	3		ns
t _{RDA0}	A0 Valid to CS LOW		3 3		ns
t _{AoCS}	CS HIGH to A0 Invalid	_	3		ns
t _{CSA0}	CO III CO II		 		
WRITE CYCLE			15		ns
$t_{ m WC}$	Write Cycle Time		5	•	ns
$t_{\mathbf{WP}}$	Write Pulse Width		2		ns
t _{SU}	Data Setup Time				
t _{IH}	Input Hold Time		4		ns
t _{A0WR}	A0 Valid to WR LOW		3		ns
twrao	WR HIGH to A0 Invalid		3		ns
t _{A0CS}	A0 Valid to CS LOW		3		ns
t _{CSA0}	CS HIGH to A0 Invalid		3		ns

NOTE

Specifications subject to change without notice. Specifications are guaranteed but not tested.

ADCOLUTE	MAXIMIM	DATINGS*
ARSOLLIE	MAXIMIIM	KAIINUTO*

$+V_s$ to APWR/ASIG GND
$-V_s$ to APWR/ASIG GND
V_{DD} to DGND+7 V
APWR/ASIG GND to DGND0.3 V to +0.3 V
Analog Input to APWR/ASIG GND
S/H IN, FILTER IN, Clvg-C4vg
Digital Input to APWR GND
SAMPLE IN, CLK IN0.3 V to +7 V
Digital Input to DGND
$D0-D11, \overline{RD}, \overline{WR}, \overline{CS}, A0, \overline{RST},$
PTC $\overline{\text{ENB}}$ 0.3 V to V_{DD} +0.3 V

Output Short Circuit Duration	
FILTER OUT, REF OUT or Clwv-C4wv	
Digital Output 1 Outp	out for 1 sec
Lead Temperature Range,	
Soldering for 10 sec	+300°C

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CATITION

ESD (electrostatic discharge) sensitive device. The digital control inputs are diode protected; however, permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. The protective foam should be discharged to the destination socket before devices are removed.

