3.6V tolerant control inputs and outputs
Bushold on data inputs eliminates the need for external

pull-up/pull-down resistors

Features

Low Voltage 16-Bit Transparent Latch with Bushold

■ t_{PD} (I_n to O_n) 3.6 ns max for 3.0V to 3.6V V_{CC}

■ 1.65V to 3.6V V_{CC} supply operation

4.5 ns max for 2.3V to 2.7V V_{CC}

6.8 ns max for 1.65V to 1.95V V_{CC}

■ Uses patented noise/EMI reduction circuitry

October 2001

Revised February 2002

- Latch-up conforms to JEDEC JED78
- ESD performance:
- Human body model > 2000V Machine model > 200V

Ordering Code:

FAIRCHILD

SEMICONDUCTOR

74ALVCH16373

General Description

Order Number	Package Number	Package Description
4ALVCH16373T	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wid
Devices also available in Ta	pe and Reel. Specify I	by appending suffix letter "X" to the ordering code.
Logic Symbo		
		10 h 12 l3 l4 l5 l6 l7 l8 l9 h0 h1 h2 h3 h4 h5
		_
		$O_0 O_1 O_2 O_3 O_4 O_5 O_6 O_7 O_8 O_9 O_{10} O_{11} O_{12} O_{13} O_{14} O_{15}$

© 2002 Fairchild Semiconductor Corporation DS500631

applications. The device is byte controlled. The flip-flops appear to be transparent to the data when the Latch Enable (LE) is HIGH. When LE is LOW, the data that meets the setup time is latched. Data appears <u>on</u> the bus when the Output Enable (\overline{OE}) is LOW. When \overline{OE} is HIGH, the outputs are in a high impedance state.

The ALVCH16373 contains sixteen non-inverting latches

with 3-STATE outputs and is intended for bus oriented

The ALVCH16373 data inputs include active bushold circuitry, eliminating the need for external pull-up resistors to hold unused or floating data inputs at a valid logic level.

The 74ALVCH16373 is designed for low voltage (1.65V to 3.6V) V_{CC} applications with output compatibility up to 3.6V.

The 74ALVCH16373 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

74ALVCH16373

Connection Diagram						
I I	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	48 47 46 45 44 40 39 38 37 36 37 36 37 36 37 36 37 32 31 30 228 27	LE ₁ I I I GND I I I I I I I I I I I I I I I I I I I			
0 ₁₅ — 0E ₂ —		26 25	— I ₁₅ — LE ₂			

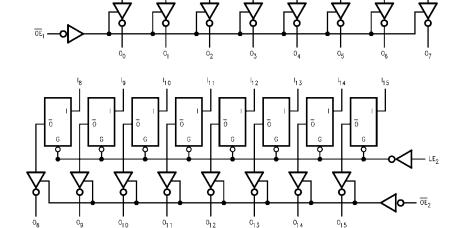
Pin Descriptions

Pin Names	Description			
OEn	Output Enable Input (Active LOW)			
LEn	Latch Enable Input			
I ₀ —I ₁₅	Bushold Inputs			
O ₀ -O ₁₅	Outputs			
NC	No Connect			

Truth Tables

	Inputs		Outputs
LE ₁	OE ₁	I ₀ –I ₇	0 ₀ –0 ₇
Х	Н	Х	Z
н	L	L	L
н	L	н	н
L	L	х	O ₀
	Inputs		Outputs
LE ₂	$\frac{\text{Inputs}}{\text{OE}_2}$	I ₈ –I ₁₅	Outputs O ₈ –O ₁₅
LE ₂	-	I ₈ -I ₁₅ X	-
	0E2		0 ₈ –0 ₁₅
х	OE ₂	X	0 ₈ -0 ₁₅ Z

L


H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial (HIGH or LOW, control inputs may not float) Z = High Impedance O₀ = Previous O₀ before HIGH-to-LOW of Latch Enable

Functional Description

The 74ALVCH16373 contains sixteen edge D-type latches with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. Control pins can be shorted together to obtain full 16-bit operation. The following description applies to each byte. When the Latch Enable (LE_n) input is HIGH, data on the I_n enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time

its I input changes. When LE_n is LOW, the latches store information that was present on the I inputs a setup time preceding the HIGH-to-LOW transition on LE_n. The 3-STATE outputs are controlled by the Output Enable (\overline{OE}_n) input. When \overline{OE}_n is LOW the standard outputs are in the 2-state mode. When \overline{OE}_n is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

	•
Supply Voltage (V _{CC})	-0.5V to +4.6V
DC Input Voltage (VI)	-0.5V to 4.6V
Output Voltage (V _O) (Note 2)	–0.5V to V _{CC} +0.5V
DC Input Diode Current (IIK)	
V ₁ < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _O < 0V	–50 mA
DC Output Source/Sink Current	
(I _{OH} /I _{OL})	±50 mA
DC V _{CC} or GND Current per	
Supply Pin (I _{CC} or GND)	±100 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$

Recommended Operating

Conditions (Note 3)

Power Supply	
Operating	1.65V to 3.6V
Input Voltage (V _I)	0V to V _{CC}
Output Voltage (V _O)	0V to V _{CC}
Free Air Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta t/\Delta V$)	
$V_{IN} = 0.8V$ to 2.0V, $V_{CC} = 3.0V$	10 ns/V

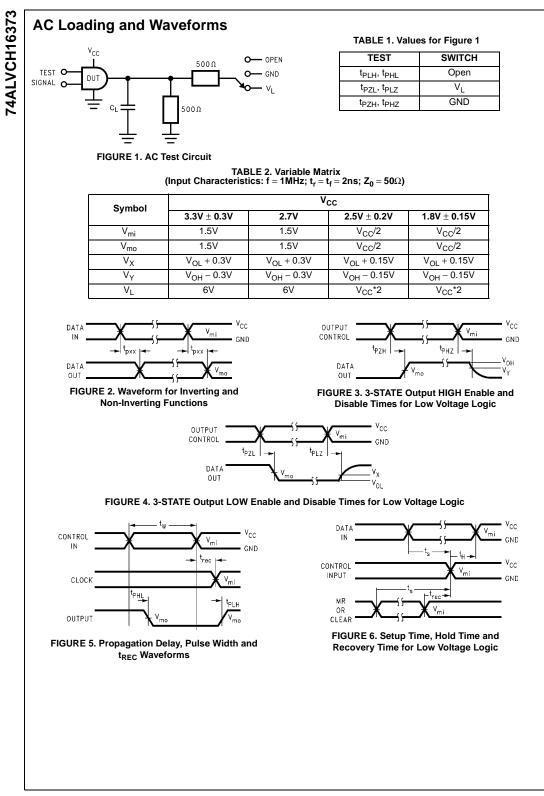
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

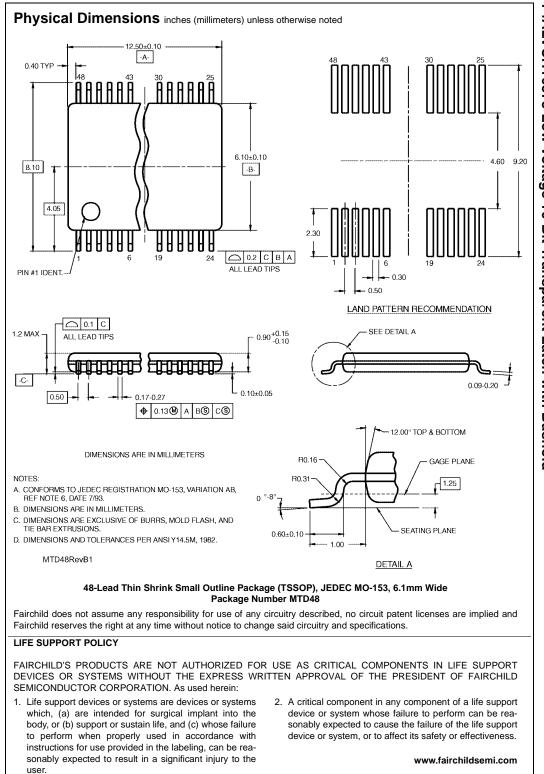
Note 2: I_O Absolute Maximum Rating must be observed.

Note 3: Floating or unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	Min	Max	Units
VIH	HIGH Level Input Voltage		1.65 -1.95	0.65 x V _{CC}		
			2.3 - 2.7	1.7		V
			2.7 - 3.6	2.0		
V _{IL}	LOW Level Input Voltage		1.65 -1.95		0.35 x V _{CC}	
			2.3 - 2.7		0.7	V
			2.7 - 3.6		0.8	
V _{OH}	HIGH Level Output Voltage	I _{OH} = -100 μA	1.65 - 3.6	V _{CC} - 0.2		
		$I_{OH} = -4 \text{ mA}$	1.65	1.2		
		I _{OH} = -6 mA	2.3	2		
		I _{OH} = -12 mA	2.3	1.7		V
			2.7	2.2		
			3.0	2.4		
		I _{OH} = -24 mA	3.0	2		
V _{OL}	LOW Level Output Voltage	I _{OL} = 100 μA	1.65 - 3.6		0.2	
		$I_{OL} = 4 \text{ mA}$	1.65		0.45	
		I _{OL} = 6 mA	2.3		0.4	v
		$I_{OL} = 12mA$	2.3		0.7	v
			2.7		0.4	
		I _{OL} = 24 mA	3		0.55	
	Input Leakage Current	$0 \le V_I \le 3.6V$	3.6		±5.0	μA
I(HOLD)	Bushold Input Minimum	V _{IN} = 0.58V	1.65	25		
	Drive Hold Current	$V_{IN} = 1.07V$	1.65	-25		
		$V_{IN} = 0.7V$	2.3	45		
		$V_{IN} = 1.7V$	2.3	-45		μA
		$V_{IN} = 0.8V$	3.0	75		
		$V_{IN} = 2.0V$	3.0	-75		
		$0 < V_O \leq 3.6V$	3.6		±500	
l _{oz}	3-STATE Output Leakage	$0 \le V_O \le 3.6V$	3.6		±10	μA
l _{cc}	Quiescent Supply Current	$V_I = V_{CC}$ or GND, $I_O = 0$	3.6		40	μΑ
Δl _{CC}	Increase in I _{CC} per Input	$V_{IH} = V_{CC} - 0.6V$	3 -3.6		750	μΑ


AC Electrical Characteristics


Symbol		$T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 500\Omega$								
	Parameter	C _L = 50 pF C _L = 30 pF						Units		
	Faiameter	V $_{CC}$ = 3.3V \pm 0.3V		$V_{CC} = 2.7V$		V $_{CC}$ = 2.5V \pm 0.2V		V $_{CC}$ = 1.8V \pm 0.15V		Units
		Min	Max	Min	Max	Min	Max	Min	Max	1
t _W	Pulse Width	3.3		3.3		3.3		4.0		ns
t _S	Setup Time	1.1		1		1		2.5		ns
t _H	Hold Time	1.4		1.7		1.5		1.0		ns
t _{PHL} , t _{PLH}	Propagation Delay In to On	1.1	3.6		4.3	1	4.5	1.5	6.8	ns
t _{PHL} , t _{PLH}	Propagation Delay LE to On	1	3.9		4.6	1	4.9	1.5	7.8	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.0	4.7		5.7	1.0	6.0	1.5	9.2	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.4	4.1		4.5	1.2	5.1	1.5	6.8	ns

74ALVCH16373

Capacitance

Symbol	Parameter		Conditions	T _A =	Units	
	Falanetei		Conditions	V _{cc}	Typical	Units
C _{IN}	Input Capacitance	Control	$V_I = 0V \text{ or } V_{CC}$	3.3	3	pF
		Data	$V_I = 0V \text{ or } V_{CC}$	3.3	6	р
C _{OUT}	Output Capacitance		$V_I = 0V \text{ or } V_{CC}$	3.3	7	pF
C _{PD}	Power Dissipation Capacitance	Outputs Enabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	22	
				2.5	19	pF
		Outputs Disabled	$f = 10 \text{ MHz}, C_L = 50 \text{ pF}$	3.3	5	Ч
				2.5	4	

